Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Неверно.

Мы загнаны в угол стечением двух обстоятельств: ошибок округления и чувствительности системы к исходному состоянию . Обсудим каждое из них.

Когда мы проводим вычисления на калькуляторе или на компьютере, результат зачастую оказывается приблизительным. Например, если мы делим 1 на 3, наши приборы выдают десятичную дробь 0,3333333. В ней, скажем, семь знаков после запятой. На самом деле троек после запятой бесконечно много, но калькулятор ограничивается конечным количеством цифр. После нескольких итераций функции f ( x ) = 3,9 x (1 – x ) количество знаков после запятой достигает дюжины. Рано или поздно компьютер выдает лишь приблизительный, а не точный результат. Обычно мы не придаем значения таким ошибкам. Если мы подсчитываем, сколько картин уместится на пустой стене, нас не волнует ошибка на одну триллионную. Почему ошибки округления имеют значение в данном случае?

Они ведут нас к загвоздке – чувствительности системы к исходному состоянию . Посчитаем итерации нашей функции, начиная с двух почти что равных величин: х = 0,1 и х = 0,10001. Интуитивно мы предполагаем, что скромная разница между исходными величинами не играет роли. Так ли это? Что произойдет?

Замечу что первые десять итераций или около того не приводят к значительным - фото 409

Замечу, что первые десять итераций или около того не приводят к значительным отличиям. Но затем траектории начинают расходиться. Это можно проиллюстрировать на графиках эволюции той и другой системы. Сплошная линия соответствует итерированию системы с исходным значением 0,1. Пунктирная линия иллюстрирует итерирование системы с исходным значением 0,10001.

Каково значение f 100001 К чему мы придем если мы проделаем тысячу - фото 410

Каково значение f 1000(0,1)? К чему мы придем, если мы проделаем тысячу итераций функции f ( x ) = 3,9 x (1 – x )?

Разумеется, мы доверяем вычисления компьютеру, но получается какая-то чепуха. Проиллюстрируем этот факт, проделав вычисления трижды с разным уровнем точности (заданным количеством знаков после запятой). Мы получим следующие результаты:

Ни одна из этих величин не равна f 100001 в точности Мы будем биться до - фото 411

Ни одна из этих величин не равна f 1000(0,1) в точности.

Мы будем биться до последней капли крови. Компьютер может работать с произвольной точностью. Он может не округлять полученное значение. К чему это приведет?

Точное значение f ⁶ 01 имеет длину 127 знаков после запятой а точное - фото 412

Точное значение f ⁶ (0,1) имеет длину 127 знаков после запятой, а точное значение f ⁷ (0,1) растягивается после запятой на 255 знаков. Количество знаков после запятой увеличится примерно вдвое на каждой итерации. Нет настолько мощного компьютера, чтобы вычислить точное значение f 1000(0,1).

К чему мы пришли? Несмотря на то что мы знаем исходное состояние системы и правило перехода от одного шага к другому, мы не в силах в точности предугадать ее состояние на 1000-м шаге.

Можно доказать, что точное значение f 1000(0,1) лежит между 0 и 1, и задаться вопросом: какова вероятность того, что f 1000(0,1), скажем, больше 0,5?

Ответ:либо 0, либо 1, потому что здесь нет ничего случайного. Либо f 1000(0,1) > 0,5, либо f 1000(0,1) ≤ 0,5, третьего не дано. Никаких «может быть», ничего случайного.

Даже настолько простая система способна оказаться хаотичной . Она абсолютно детерминирована и в то же время непредсказуема.

Огромное количество математических систем ведет себя хаотично, и многие из них позволяют строить модели явлений природы, например в метеорологии.

3 x + 1, или проблема Коллатца [212] Лотар Коллатц (1910–1990) – немецкий математик, специалист по теории аппроксимации. – Прим. пер.

До сих пор мы говорили об итерациях логистических отображений. Мы закончили обсуждением разных типов функций и тернистой, неразрешимой проблемы их итерации.

Логистическое отображение – функция, заданная простой алгебраической формулой. Однако функции можно задавать иначе. Функция F , о которой сейчас пойдет речь, определена исключительно для положительных целых чисел и задана следующим образом:

Эта функция задается двумя простыми алгебраическими формулами но мы выбираем - фото 413

Эта функция задается двумя простыми алгебраическими формулами, но мы выбираем формулу в зависимости от того, четное число x или нечетное.

Пример:

F (9) = 28. Число 9 – нечетное, поэтому мы руководствуемся формулой 3 х + 1 и получаем 3 × 9 + 1 = 28;

F (10) = 5. Число 10 – четное, поэтому мы руководствуемся формулой x /2 и получаем 10/2 = 5.

Вне зависимости от того, четное число мы подставляем в функцию или нечетное, ее значение будет целым положительным числом.

Короче говоря, если x – целое положительное число, F ( x ) – тоже целое положительное число.

Мы можем итерировать нашу функцию, потому что выходное значение удовлетворяет условию, наложенному на входное значение. Что мы получим, итерируя функцию при начальном значении x = 12?

F (12) = 6, потому что число 10 четное;

F ² (12) = F (6) = 3, потому что число 6 четное;

F ³ (12) = F (3) = 10, потому что число 3 нечетное;

F ⁴ (12) = F (10) = 5.

Вот удобный способ проиллюстрировать итерации. Мы записываем 12 → 6, подразумевая, что значение функции от 12 равно 6. Мы можем записать итерации F следующим образом:

Тройка 4 2 1 повторяется А что дальше Так как F 1 4 F 4 2 F 2 - фото 414

Тройка 4 → 2 → 1 повторяется! А что дальше? Так как F (1) = 4, F (4) = 2, F (2) = 1, следующие три значения те же самые.

Другими словами, когда мы дошли до числа 1, тройка 4 → 2 → 1 будет повторяться до бесконечности.

Начнем с другой величины, скажем с 9. Вот что мы имеем: 9 → 28 → 14 → 7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1.

Вот еще один впечатляющий ряд итераций:

27 → 82 → 41 → 124 → 62 → 31 → 94 → 47 → 142 → 71 → 214 → 107 → 322 → 161 → 484 → 242 → 121 → 364 → 182 → 91 → 274 → 137 → 412 → 206 → 103 → 310 → 155 → 466 → 233 → 700 → 350 → 175 → 526 → 263 → 790 → 395 → 1186 → 593 → 1780 → 890 → 445 → 1336 → 668 → 334 → 167 → 502 → 251 → 754 → 377 → 1132 → 566 → 283 → 850 → 425 → 1276 → 638 → 319 → 958 → 479 → 1438 → 719 → 2158 → 1079 → 3238 → 1619 → 4858 → 2429 → 7288 → 3644 → 1822 → 911 → 2734 → 1367 → 4102 → 2051 → 6154 → 3077 → 9232 → 4616 → 2308 → 1154 → 577 → 1732 → 866 → 433 → 1300 → 650 → 325 → 976 → 488 → 244 → 122 → 61 → 184 → 92 → 46 → 23 → 70 → 35 → 106 → 53 → 160 → 80 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1.

Мы снова дошли до 1, но после ста с лишним итераций.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x