Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

144

Георг Пик (1859–1942) – австрийский математик, профессор Университета Карла-Фердинанда в Праге. – Прим. пер.

145

Как ни странно, некоторые из четырех центров могут лежать вне треугольника! Догадываетесь почему? Ответ – в конце главы.

146

Фрэнк Морли (1860–1937) – заведующий кафедрой в Университете Джонса Хопкинса в Балтиморе, главный редактор American Journal of Mathematics. Он доказал эту теорему в 1899 году, когда изучал свойства кривых, заданных кубическим уравнением. – Прим. пер.

147

Равнобедренным называют такой треугольник, где две стороны равны между собой.

148

Из теоремы Пифагора следует, что диагональ квадрата со стороной 1 равна √2. Дело в том, что диагональ квадрата рассекает его на два прямоугольных треугольника; длина их катетов равна 1, в то время как длина гипотенузы равна некоторой величине c . По теореме Пифагора c ² = 1² + 1² = 2. Извлечение квадратного корня дает картинка 450Об этом числе шла речь в главе 4.

149

Это доказательство было найдено Бхаскарой, индийским математиком X II века.

150

Джеймс Гарфилд (1831–1881) был самоучкой, преподавал в школах и вузе, занимался адвокатурой. Воевал на стороне северян, был видным деятелем Республиканской партии. Погиб от руки террориста через три месяца после вступления в должность президента. – Прим. пер.

151

Трапеция – это четырехугольник, в котором две стороны параллельны друг другу, а две другие – нет. Параллельные стороны называют основаниями трапеции. Площадь трапеции можно вычислить по формуле Путеводитель для влюбленных в математику - изображение 451где bb 2 – длины оснований, а h – расстояние между ними. Обратите внимание, что трапеция в доказательстве Гарфилда – половина фигуры, разобранной в нашем первом доказательстве, образованная путем рассечения малого квадрата по диагонали.

152

Мы обсуждали комплексные числа в главе 5.

153

В русскоязычной литературе обычно используют термин «модуль». – Прим. пер.

154

Головоломка!Числа 1, –1, i и – i имеют абсолютную величину 1, но это не единственные в своем роде числа. Опишите геометрическим способом все комплексные числа с абсолютной величиной 1. Ответ – в конце главы.

155

Прямоугольный треугольник со сторонами 3, 4 и 5 был известен уже древним египтянам.

156

Если хотите, можете пока просто поверить мне на слово, что | z ²| = | z |² для всех комплексных чисел. Вскоре вы увидите, как это доказать с помощью несложных алгебраических выкладок.

157

Комплексное число z = x + yi , где x и y – целые числа, называют гауссовым целым числом.

158

Эта история – священный миф математического сообщества, она пересказана во множестве книг и статей. Действительно ли Ферма нашел доказательство? Сомнительно. Более интересный вопрос: Ферма верил, что нашел доказательство, или разыгрывал читателей? Я предпочитаю второй вариант.

159

Сэр Эндрю Джон Уайлс (род. 1953) – британский и американский математик, профессор Оксфордского университета. – Прим. пер.

160

Математики различают окружность (линию) и круг (участок плоскости, ограниченный окружностью). (Точно так же различаются сфера (поверхность) и шар (область пространства, ограниченная сферой). – Прим. науч. ред. )

161

Теперь мы заполняем не поднос консервными банками, а большую коробку шарами одного радиуса. Пример наиболее плотной упаковки вы обнаружите в ближайшем супермаркете в отделе с фруктами, если увидите пирамиду апельсинов.

162

Точное соотношение равно картинка 452

163

Томас Хэйлс (род. 1958) – профессор Питтсбургского университета. – Прим. пер.

164

Рене Декарт (1596–1650) – французский философ, математик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики. – Прим. пер.

165

Соответственно, когда кривизна стремится к бесконечности, окружность схлопывается в точку. – Прим. пер.

166

Фредерик Содди (1877–1956) – английский радиохимик, лауреат Нобелевской премии 1921 года «за вклад в химию радиоактивных веществ и за исследование происхождения и природы изотопов». – Прим. пер.

167

Блез Паскаль (1623–1662) – французский математик, физик и философ. – Прим. пер.

168

В общем виде теорема Паскаля формулируется так: если шестиугольник (выпуклый или самопересекающийся) вписан в окружность или любое другое коническое сечение (эллипс, параболу, гиперболу), точки пересечения трех пар противоположных сторон лежат на одной прямой. – Прим. пер.

169

Высота равностороннего треугольника со стороной 2 рассекает его на два прямоугольных треугольника с гипотенузой длиной 2 и катетом длиной 1. По теореме Пифагора мы можем вычислить длину оставшегося катета.

170

Стороны правильного семиугольника имеют равную длину, и углы также равны между собой.

Головоломка.Углы правильного семиугольника равны между собой. Но чему они равны? Подсказка: помните, что сумма углов треугольника равна 180°. Ответ – в конце главы.

171

Отрезки одинаковой длины или углы одинаковой величины называют конгруэнтными. Две фигуры конгруэнтны, если они совпадают при наложении друг на друга.

172

Древнегреческий философ Платон не был первооткрывателем этих пространственных фигур, однако подробно описал их в трактате «Тимей» (около 360 года до н. э.), где сказано, что образцом Вселенной для Демиурга послужил додекаэдр, стихия огня состоит из массы мельчайших тетраэдров, стихия земли – из кубов, стихия воздуха – из октаэдров, стихия воды – из икосаэдров. – Прим. пер.

173

Если вы сосредоточенно изучите таблицу в поисках взаимосвязей, то заметите, что параметры для куба и октаэдра симметричны: (8, 12, 6) и (6, 12, 8). Так же обстоит дело с додекаэдром и икосаэдром: (20, 30, 12) и (12, 30, 20). Эту перекличку называют дуальность.

Если вы расставите точки по центру каждой грани куба и затем соедините точки, образующие пространственные углы, получится новый многогранник внутри куба: октаэдр. И наоборот, если вы расставите точки по центру каждой грани октаэдра и соедините их между собой, получится куб. Та же дуальность связывает икосаэдр и додекаэдр.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x