Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подобно общему выводу Эрроу о невозможности агрегирования предпочтений, общий вывод о манипулируемости также носит негативный характер. В частности, теорема Гиббарда — Саттертуэйтапоказывает, что при наличии трех или более альтернатив единственная процедура голосования, препятствующая стратегическому голосованию, — это диктатура: одному человеку отводится роль диктатора и его предпочтения определяют итоги выборов [273]. Сочетание выводов Викри об условиях независимости от посторонних альтернатив и теоремы Гиббарда — Саттертуэйта может помочь читателю понять, почему теорему Эрроу часто сводят к выяснению того, какие процедуры голосования могут одновременно удовлетворять условию отсутствия диктатора и условию независимости от посторонних альтернатив.
И наконец, по мнению некоторых теоретиков, системы голосования следует оценивать не по их способности удовлетворять условиям Эрроу, а по их склонности стимулировать манипулирование. Относительную манипулируемость системы голосования можно определить по количеству информации о предпочтениях других избирателей, которая требуется голосующим для успешного манипулирования выборами. По данным ряда исследований, основанных на этом критерии, из всех рассмотренных выше процедур голосования принцип относительного большинства самый манипулируемый (то есть требующий наименьшего объема информации о предпочтениях). Рейтинг процедур голосования в порядке снижения уровня манипулируемости таков: одобрительное голосование, подсчет Борда, процедура внесения поправок, принцип простого большинства и процедура Хара (система единого передаваемого голоса) [274].
Важно отметить, что классификация процедур голосования по уровню манипулируемости зависит только от объема информации, необходимой для манипулирования системой голосования, и не основана на легкости правильного использования этой информации или том, могут ли отдельные избиратели или группы без труда прибегнуть к манипулированию. На практике отдельным избирателям, как правило, манипулировать голосованием по принципу относительного большинства довольно сложно.
5. Теорема о медианном избирателе
Во всех предыдущих разделах основное внимание уделялось поведению (стратегическому или иному) избирателей на выборах с несколькими альтернативами. Тем не менее стратегический анализ применим и к поведению кандидатов , участвующих в выборах. Например, учитывая особенности распределения избирателей и их предпочтений, кандидаты могут определить оптимальные стратегии построения своих политических платформ. Когда в выборах участвуют всего два кандидата, когда избиратели распределены по политическому спектру «разумным» способом и когда у каждого избирателя «разумно» непротиворечивые предпочтения (предпочтения с одним максимумом), теорема о медианном избирателегласит, что оба кандидата будут позиционировать себя в политическом спектре там же, где и медианный избиратель. Медианный избиратель— это «средний» избиратель в этом распределении, точнее говоря, избиратель, который находится в 50-м перцентиле.
В данном случае полная игра состоит из двух этапов. На первом кандидаты выбирают свою позицию в политическом спектре. На втором избиратели выбирают одного из кандидатов. В общем плане игра на втором этапе открыта для всех возможных стратегических искажений предпочтений, обсуждавшихся ранее. В связи с этим в целях нашего анализа мы сократили количество кандидатов до двух во избежание появления такого поведения в равновесии. Только при наличии двух кандидатов голосование избирателей будет в точности соответствовать их предпочтениям, а решение кандидатов о позиции в политическом спектре, принимаемое на первом этапе, — единственным поистине интересным аспектом большой игры. Именно на этом этапе теорема о медианном избирателе определяет поведение, соответствующее равновесию Нэша.
А. Дискретный политический спектрСначала рассмотрим совокупность из 90 миллионов избирателей, каждый из которых имеет предпочтительную позицию в политическом спектре, состоящем из пяти позиций: крайняя левая (КЛ), левая (Л), центральная (Ц), правая (П) и крайняя правая (КП). Допустим, избиратели распределены симметрично вокруг центра политического спектра. Дискретное распределениеих местоположения показано на гистограмме, или столбчатой диаграмме, представленной на рис. 15.7. Высота каждого столбика отображает количество избирателей, соответствующих этой позиции. В данном примере мы исходим из предположения, что из 90 миллионов избирателей 40 миллионов отдают предпочтение левой позиции, 20 миллионов — крайней правой и по 10 миллионов — крайней левой, центральной и правой.
Рис. 15.7.Дискретное распределение избирателей
Избиратели будут голосовать за кандидата, который публично позиционирует себя как максимально разделяющего их собственную позицию в политическом спектре во время выборов. Если оба кандидата политически равноудалены от группы избирателей-единомышленников, каждый избиратель подбрасывает монету, чтобы решить, какого кандидата выбрать. Этот процесс дает каждому кандидату половину избирателей в данной группе.
Теперь допустим, что в предстоящих президентских выборах участвуют два кандидата: бывшая первая леди (Клаудия) и бывшая потенциальная первая леди (Долорес), каждая из которых выдвинула свою кандидатуру на пост президента [275]. При конфигурации избирателей как на рис. 15.7мы можем составить таблицу выигрышей для двух кандидатов, показывающую число голосов, на получение которых может рассчитывать каждый из них при всех возможных комбинациях вариантов выбора политической платформы. Эта таблица пять на пять представлена на рис. 15.8, где данные выражены в миллионах голосов. Каждому кандидату предстоит выбрать оптимальную стратегию положения в политическом спектре, чтобы максимизировать количество полученных голосов (а значит, и шансы на победу) [276].
Рис. 15.8.Таблица выигрышей в игре «позиционирование кандидатов»
Вот как распределены голоса. Когда оба кандидата выбирают одну и ту же позицию (пять ячеек по диагонали таблицы из верхнего левого в нижний правый угол), каждый получает ровно половину голосов. Поскольку все избиратели равноудалены от каждого кандидата, все они подбрасывают монету, чтобы решить, кого предпочесть; в итоге каждый кандидат получает 45 миллионов голосов. Когда два кандидата выбирают разные позиции, более левый кандидат получает все голоса избирателей, находящихся в его позиции или слева от нее, а более правый кандидат — все голоса избирателей, находящихся в его позиции или справа от нее. Кроме того, каждый кандидат получает голоса избирателей, расположенных в центральных позициях ближе к нему, чем к его сопернику, и оба делят поровну голоса избирателей, находящихся в центральной позиции на равном расстоянии от них. Таким образом, если Клаудия выберет позицию Л, тогда как Долорес позицию КП, Клаудия получит 40 миллионов голосов в позиции Л, 10 миллионов голосов в позиции КЛ и 10 миллионов голосов в позиции Ц (поскольку Ц ближе к Л, чем к КП). Долорес получит 20 миллионов голосов в позиции КП и 10 миллионов голосов в позиции П (поскольку П ближе к КП, чем к Л). Выигрыш составляет (60, 30). Аналогичные вычисления позволяют определить исходы в остальных ячейках таблицы.
Читать дальшеИнтервал:
Закладка: