Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, Долорес выбирает случайную позицию на шкале политического спектра, скажем, позицию х на рис. 15.9a. Затем Клаудия вычисляет, как разделятся голоса во всех возможных позициях, которые она может выбрать. Если она выберет позицию слева от х , то получит все голоса слева от нее и половину голосов, расположенных между ее позицией и позицией Долорес. Если Клаудия предпочтет позицию справа от х , то получит все голоса справа от нее и половину голосов, расположенных между ее позицией и позицией х . И наконец, если Клаудия также выберет позицию х , то они с Долорес разделят голоса поровну. По сути, эти три возможности отображают все варианты выбора местоположения, имеющиеся у Клаудии при условии, что Долорес выберет позицию х .

Но какая из вышеупомянутых ответных стратегий Клаудии лучшая? Ответ на этот вопрос зависит от местоположения х по отношению к медианному избирателю. Если х находится справа от медианной позиции, Клаудия знает, что ее наилучший ответ — максимизировать количество набранных голосов, что она может сделать, выбрав позицию, смещенную влево от позиции x на бесконечно малую величину [282]. В таком случае Клаудия, по сути, получит все голоса в интервале от 0 до x , а Долорес — голоса в интервале от х до 1. Когда x находится справа от медианной позиции, как на рис. 15.9a, количество избирателей, представленное площадью под функцией распределения в интервале от 0 до x , по определению больше числа избирателей в интервале от x до 1, а значит, Клаудия выиграет выборы. Аналогично, если x находится слева от медианной позиции, наилучший ответ Клаудии состоит в выборе позиции, смещенной вправо от позиции x на бесконечно малую величину; тогда она получит все голоса в интервале от x до 1. Когда позиция x совпадает с медианной точкой, Клаудии лучше всего также выбрать позицию x .

Стратегии наилучших ответов Долорес строятся точно так же и с учетом позиции соперницы аналогичны стратегиям, описанным для Клаудии. На графике две линии наилучших ответов расположены над и под линией, которая проходит под углом 45 градусов через позицию медианного избирателя, а в этой точке эти линии совпадают с линией под углом 45 градусов. (Наилучший ответ Клаудии на расположение Долорес в позиции медианного избирателя — расположиться точно в том же месте; то же справедливо в обратном порядке в случае Долорес.) Вне позиции медианного избирателя графики наилучших ответов находятся по разные стороны от линии под углом 45 градусов.

Теперь у нас есть полное описание стратегий наилучших ответов обоих кандидатов. Равновесие Нэша возникает в точке пересечения линий наилучших ответов; это пересечение находится в позиции медианного избирателя. Вы можете интуитивно проанализировать эту ситуацию, выбрав любое исходное положение для одного из кандидатов и перебирая стратегии наилучших ответов до тех пор, пока каждый кандидат не окажется в позиции, отображающей наилучший ответ на позицию другого кандидата. Если бы на рис. 15.9aДолорес анализировала возможность выбора позиции x , Клаудия предпочла бы позицию непосредственно слева от x , но тогда Долорес захотела бы расположиться сразу же слева от этой позиции и т. д. Только тогда, когда кандидаты располагаются именно в медианной точке распределения (будь то равномерного, нормального или любого другого), их решения будут наилучшим ответом на действия друг друга. Опять же, мы видим, что равновесие Нэша сводится к размещению обоих кандидатов в позиции медианного избирателя.

Для того чтобы удовлетворить интерес истинного математика, доказательство версии теоремы о медианном избирателе с непрерывным распределением потребует более сложных математических выкладок. Нам же приведенного описания вполне достаточно, чтобы убедить вас в обоснованности теоремы в случае как дискретного, так и непрерывного политического спектра. Самое важное ограничение теоремы о медианном избирателе состоит в том, что она применима только при наличии одного вопроса, то есть при одномерном спектре политических различий. Если таких измерений два или более (например, консервативная или либеральная позиция по социальным вопросам не совпадает с консервативной или либеральной позицией по экономическим вопросам), то совокупность избирателей распределена в двумерном «пространстве вопросов» и теорема о медианном избирателе не выполняется. У каждого отдельно взятого избирателя могут быть предпочтения с одним максимумом в том смысле, что у него есть наиболее предпочтительная точка, а его выигрыш во всех направлениях от нее уменьшается подобно тому, как уменьшается высота горы по мере отдаления от ее вершины. Однако мы не сможем идентифицировать медианного избирателя в ситуации с двумя измерениями с равным количеством избирателей, наиболее предпочтительная позиция которых находится по обе стороны позиции медианного избирателя. В случае двух измерений нет однозначного восприятия стороны, а количество избирателей по обе стороны может меняться в зависимости от того, как именно мы определяем «сторону».

Резюме

Выборы можно проводить с использованием ряда различных процедур голосования, которые позволяют изменить порядок рассмотрения вопросов или способ подсчета голосов. Процедуры голосования подразделяются на бинарные, множественные и смешанные методы . Бинарные методы включают в себя принцип простого большинства и парные процедуры голосования, в частности метод Кондорсе и процедуру внесения поправок. Позиционные методы , такие как принцип относительного большинства и подсчет Борда , а также одобрительное голосование , относятся к категории множественных методов. Смешанные методы представлены системой простого большинства со вторым туром, системой мгновенного второго тура и системой пропорционального представительства .

Парадоксы голосования ( парадокс Кондорсе, парадокс повестки дня и парадокс перестановки ) показывают, что трудности с агрегированием предпочтений или небольшие изменения в списке рассматриваемых вопросов могут привести к результатам, противоречащим здравому смыслу. Еще один парадоксальный результат состоит в том, что итоги любых отдельно взятых выборов при заданной совокупности предпочтений избирателей могут меняться в зависимости от используемой процедуры голосования. Определенные принципы оценки методов голосования можно сформулировать, хотя, согласно теореме о невозможности Эрроу, ни одна система не удовлетворяет всем критериям одновременно. Исследователи, работающие в самых разных областях, пытались найти альтернативу принципам, сформулированным Эрроу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x