Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Тут можно читать онлайн Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент МИФ без БК, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-00100-388-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Аналогичная 90-градусная фазовая задержка происходит и в других колебательных системах. Когда маятник раскачивается туда-сюда, его скорость достигает максимума, когда он проходит нижнюю точку, в то время как угол достигает максимума спустя четверть цикла, когда маятник займет крайнее положение. График зависимости угла и скорости от времени показывает две приблизительные синусоиды, колеблющиеся с разностью в 90 градусов по фазе.

Еще один пример – упрощенная биологическая модель взаимодействия «хищник – жертва». Представьте популяцию акул, охотящихся на популяцию каких-то рыб. Когда численность рыбы находится на максимуме, популяция акул растет с максимальной скоростью, потому что у нее есть много корма, и достигает максимального количества через четверть цикла, к моменту, когда численность рыб падает, потому что они стали жертвами масштабной охоты четвертью цикла ранее. Анализ такой модели показывает, что численности двух популяций колеблются с разницей в 90 градусов по фазе. Подобные колебания «хищник – жертва» наблюдаются в природе повсеместно, например в годовых популяциях зайца и рыси в Канаде, как было установлено промысловыми компаниями в 1880-х годах (хотя реальное объяснение этих колебаний, несомненно, гораздо сложнее, как это часто бывает в биологии).

Если вернуться к данным о продолжительности дня, то мы видим, что это не идеальные синусоиды. Кроме того, это дискретный набор точек, по одной в день, и между ними нет никаких данных. В результате отсутствует тот континуум точек, который нужен для математического анализа. Поэтому для последнего примера производной обратимся к случаю, когда мы можем собирать данные с произвольным разрешением, вплоть до миллисекунды.

Производная как мгновенная скорость

Вечер 16 августа 2008 года в Пекине выдался безветренным. В 22:30 восемь быстрейших людей мира выстроились на стартовой линии для финального забега на 100 метров. Один из них, 21-летний ямайский спринтер по имени Усэйн Болт [190]был относительным новичком в этом состязании. Более известный забегами на 200 метров, он годами упрашивал своего тренера позволить ему пробежать более короткую дистанцию, и за последний год очень на ней преуспел.

Он был непохож на других спринтеров – долговязый, ростом 1,96 метра, с длинным резким шагом. В детстве он занимался футболом и крикетом, пока тренер не обратил внимание на его скорость и не предложил попробовать себя на беговой дорожке. Подростком Усэйн продолжал совершенствоваться как бегун, однако никогда не относился слишком серьезно ни к спорту, ни к себе. Он был озорным и обожал розыгрыши.

В тот вечер в Пекине, после того как всех финалистов представили и показали на экране, стадион затих [191]. Спринтеры поставили ноги в стартовые колодки и заняли исходное положение. Последовали команды: «На старт! Внимание!» – и выстрел из стартового пистолета.

Болт сорвался с колодок не так стремительно, как другие участники. Медленная реакция сделала его на старте седьмым из восьми спринтеров. Набирая скорость, через тридцать метров Болт был уже в середине. По-прежнему ускоряясь, как поезд-экспресс, он оставил между собой и другими бегунами огромный просвет.

На восьмидесяти метрах ямайский спринтер посмотрел вправо, чтобы взглянуть на соперников. Поняв, насколько сильно их опередил, он заметно замедлился, опустил руки и хлопнул себя по груди, пересекая финишную черту. Одни комментаторы восприняли это как хвастовство, другие – как проявление радости, но в любом случае Болт явно не ощущал потребности мчаться в конце изо всех сил, что привело к спекуляциям на тему, насколько быстрее он мог бы бежать. Как бы то ни было, даже с такой жестикуляцией (и развязанными шнурками) он установил новый мировой рекорд – 9,69 секунды. Его критиковали за неспортивное поведение и неуважение, но Болт и не думал ни о чем подобном. Позднее он говорил репортерам: «Это всего лишь я. Люблю веселиться и просто быть расслабленным» [192].

WENN Ltd Alamy Как быстро он бежал Ну 100 метров за 969 секунды означает - фото 91

WENN Ltd / Alamy

Как быстро он бежал? Ну, 100 метров за 9,69 секунды означает скорость 100 / 9,69 = 10,32 метра в секунду. В более привычных единицах это 37 километров в час. Однако это его средняя скорость в забеге. Он двигался медленнее в начале и конце и быстрее в середине.

Более подробную информацию можно получить из его промежуточного времени, зарегистрированного через каждые 10 метров дорожки стадиона. Первые 10 метров он пробежал за 1,83 секунды, что соответствует средней скорости 5,46 метра в секунду. Самыми быстрыми отрезками были 50–60, 60–70 и 70–80 метров. Каждый из этих 10-метровых отрезков он промчался за 0,82 секунды, то есть со средней скоростью 12,2 метра в секунду. Наконец, на последних 10 метрах, когда он расслабился и сбавил скорость, он замедлился до средней скорости 11,1 метра в секунду.

Человеческие существа плохо воспринимают числа, но хорошо научились распознавать закономерности, так что вместо того чтобы разглядывать числа, как мы только что делали, представим их наглядно. На следующем графике показано время, за которое ямайский спринтер последовательно преодолевал 10, 20, 30 метров и так далее – вплоть до результата 9,69 секунды, с которым он пересек финишную черту – отметку 100 метров.

Я соединил точки отрезками чтобы глазам их легче было воспринимать но имейте - фото 92

Я соединил точки отрезками, чтобы глазам их легче было воспринимать, но имейте в виду, что реальные данные здесь только точки. Вместе точки и отрезки между ними образуют ломаную линию. Наклоны этих отрезков меньше всего слева, что соответствует самой низкой скорости Болта в начале забега. По мере движения вправо они изгибаются вверх, а значит, бегун ускоряется, а затем составляют практически прямую линию, указывающую на высокий и стабильный темп бега, который спринтер поддерживал б о льшую часть дистанции.

Вполне естественно задаться вопросом, в какой момент он двигался с самой большой скоростью и в каком месте дистанции это происходило. Мы знаем, что самая высокая средняя скорость на 10-метровом участке была где-то между 50 и 80 метрами, но средняя скорость на 10-метровом отрезке – не совсем то, что нам нужно; нас интересует пиковая скорость. Представьте, что у Усэйна Болта есть спидометр. В какой именно момент спортсмен бежал быстрее всего? И насколько быстро?

Здесь мы ищем способ измерить мгновенную скорость спринтера. Это понятие кажется почти парадоксальным. В любой момент времени Усэйн Болт располагался точно в одном месте, застыв, как на мгновенном снимке. Как можно говорить о его скорости в такой момент? Скорость может относиться только к некоторому промежутку времени, а не к отдельному мгновению.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесконечная сила [Как математический анализ раскрывает тайны вселенной] отзывы


Отзывы читателей о книге Бесконечная сила [Как математический анализ раскрывает тайны вселенной], автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x