Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Тут можно читать онлайн Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент МИФ без БК, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-00100-388-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Простейшая иллюстрация его идеи возвращает нас к знакомой задаче с автомобилем, движущимся с постоянной скоростью, для которого пройденное расстояние равно скорости, умноженной на время. Каким бы элементарным ни был этот пример, он все же отражает суть основной теоремы и поэтому подойдет для начала ее рассмотрения.

Представьте, что машина едет по шоссе со скоростью 60 километров в час. Если мы построим график зависимости расстояния от времени и график зависимости скорости от времени, то они будут выглядеть так:

Сначала посмотрим на расстояние в зависимости от времени Через один час - фото 96 Сначала посмотрим на расстояние в зависимости от времени Через один час - фото 97

Сначала посмотрим на расстояние в зависимости от времени. Через один час автомобиль проедет 60 километров, через два часа – 120 километров и так далее. В целом расстояние и время связаны соотношением y ( t ) = 60 t , где y ( t ) – расстояние, пройденное за время t . Я буду называть y ( t ) = 60 t функцией расстояния. Как показано на верхнем рисунке, график функции расстояния – это прямая с наклоном (угловой коэффициент) 60 километров в час. Эта величина сообщает нам скорость автомобиля в любой момент (если бы мы ее еще не знали). В более сложных ситуациях скорость может меняться, но сейчас это простая постоянная функция, v ( t ) = 60 для любых значений t . Она отображена на нижнем рисунке в виде горизонтальной линии.

Посмотрев, как скорость проявляет себя на графике расстояния (как наклон прямой), теперь переиначим вопрос и спросим: как расстояние проявляет себя на графике скорости? Иными словами, есть ли на графике скорости какая-нибудь визуальная или геометрическая особенность, которая позволила бы нам увидеть, какое расстояние преодолел автомобиль за любое конкретное время t ? Да, есть. Пройденное расстояние – это площадь под кривой скорости (в нашем случае это прямая линия) до момента времени t .

Чтобы понять, почему это так, предположим, что машина проехала какое-то определенное время, например полчаса. В этом случае она проедет 30 километров, поскольку Бесконечная сила Как математический анализ раскрывает тайны вселенной - изображение 98Но суть всего этого в том, что мы можем узнать это расстояние в виде площади серого прямоугольника под прямой между моментами времени t = 0 и часа Высота этого прямоугольника 60 километров в час основание часа Это - фото 99часа.

Высота этого прямоугольника 60 километров в час основание часа Это дает - фото 100

Высота этого прямоугольника – 60 километров в час, основание – картинка 101часа. Это дает нам площадь 30 километров, что и будет пройденным расстоянием.

То же самое рассуждение работает для любого времени t . Основанием прямоугольника будет t , высота – по-прежнему 60, поэтому площадь равна 60 t . И действительно, именно это расстояние мы и ожидаем найти, y = 60 t .

Таким образом, как минимум в этом примере, где скорость всегда постоянна, а кривая скорости – просто прямая линия, ключ к определению пройденного расстояния – поиск площади под кривой скорости. Открытие Ньютона состояло в том, что это равенство между площадью и расстоянием верно всегда , даже если скорость непостоянна. Как бы неравномерно ни двигался объект, площадь под кривой скорости к моменту t всегда равна общему расстоянию, пройденному за время t. Это один из вариантов основной теоремы. Он кажется слишком простым, чтобы претендовать на истину, но тем не менее это она и есть.

Ньютон пришел к нему, думая о площади как о переменной величине, а не о фиксированной мере, как тогда было принято в геометрии. Он ввел в геометрию время, рассматривая ее как физику. Если бы Ньютон жил сегодня, возможно, он бы визуализировал приведенный выше рисунок с помощью анимации, например в виде кинеографа [201], а не мгновенного снимка. Чтобы сделать это, снова взгляните на картинку выше, но теперь представьте, что это один кадр фильма или одна страничка в кинеографе. Как будет меняться серый прямоугольник, если мы начнем просматривать анимацию? Мы увидим, что он расширяется вправо. Почему? Потому что длина его основания равна t и она увеличивается со временем. Если бы мы могли делать по кадру для каждого момента и последовательно их воспроизводить, словно пролистывая странички в кинеографе, то увидели бы, как анимированная версия серого прямоугольника расширяется вправо. Это походило бы на поршень или лежащий на боку шприц, который втягивает серую жидкость.

Эта серая жидкость представляет собой увеличивающуюся площадь прямоугольника. Мы представляем, что эта площадь «накапливается» под кривой скорости v ( t ). В нашем случае площадь, накопленная к моменту времени t , равна A ( t ) = 60 t , что совпадает с расстоянием, пройденным автомобилем, y ( t ) = 60 t . Таким образом, накопленная площадь под кривой скорости дает расстояние как функцию времени. Это вариант основной теоремы для движения.

Постоянное ускорение

Мы прокладываем дорогу к Ньютонову общему геометрическому случаю основной теоремы, в котором фигурирует произвольная кривая y ( t ) и площадь A ( t ) под ней. Идея накопления площади – ключевая для объяснения теоремы, но я понимаю, что к ней следует немного привыкнуть. Поэтому давайте применим ее еще к одной конкретной задаче о движении, прежде чем перейдем к общему случаю.

Рассмотрим объект, движущийся с постоянным ускорением. Это означает, что он перемещается все быстрее и быстрее с равномерно увеличивающейся скоростью. Это немного напоминает то, как вы нажимаете на педаль газа в своем автомобиле, и он разгоняется из состояния покоя. Через одну секунду машина достигнет скорости, предположим, 10 километров в час, через две – 20 километров в час, через три – 30 километров в час и так далее. В этом гипотетическом примере автомобиль каждую секунду добавляет к своей скорости 10 километров в час. Такое изменение скорости, 10 километров в час за секунду, называется ускорением автомобиля. (Для простоты проигнорируем тот факт, что машина не может ускоряться бесконечно и что ускорение не строго постоянно, когда вы давите на педаль газа.)

В нашем идеализированном примере скорость в любой момент времени задается уравнением v ( t ) = 10 t . Здесь число 10 означает ускорение автомобиля. Если бы ускорение было другой константой, допустим a , то формула приняла бы более общий вид v ( t ) = at .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесконечная сила [Как математический анализ раскрывает тайны вселенной] отзывы


Отзывы читателей о книге Бесконечная сила [Как математический анализ раскрывает тайны вселенной], автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x