Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Тут можно читать онлайн Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент МИФ без БК, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-00100-388-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

129

Инвазивный (от лат invadere – «проникать внутрь») – основанный на введении инструментов через кожу пациента. При неинвазивных процедурах проникновения через кожу, наоборот, нет. Прим. пер .

130

Sobel, Longitude.

131

Премия была установлена в 1714 году. Харрисон создал несколько хронометров H1, H2, H3, H4, постепенно улучшая конструкцию и получая от государства некоторые средства на работу. В 1773 году после вмешательства короля Георга III изобретатель (которому было уже 80 лет) наконец добился платы в сумме 8750 фунтов за свои достижения, однако формально официальной премии Харрисон не получал (объявленную награду так никому и не вручили). Впрочем, в течение многих лет работы часовщик получил от Комиссии долгот и парламента в сумме свыше 23 тысяч фунтов. Прим. пер .

132

Thompson, Global Positioning System, и https://www.gps.gov.

133

О жизни и трудах Кеплера смотрите Owen Gingerich, Johannes Kepler, в Gillispie, Complete Dictionary, vol. 7, в интернете по адресу https://www.encyclopedia.com/people/science-and-technology/astronomy-biographies/johannes-kepler#kjen14, с дополнениями, сделанными J. R. Voelkel в томе 22. Смотрите также Kline, Mathematics in Western Culture, 110–25; Edwards, The Historical Development, 99–103; Asimov, Asimov’s Biographical Encyclopedia, 96–99; Simmons, Calculus Gems, 69–83; и Burton, History of Mathematics, 355–60.

134

Цитируется по: Gingerich, Johannes Kepler, https://www.encyclopedia.com/people/science-and-technology/astronomy-biographies/johannes-kepler#kjen14.

135

Цитируется по: Gingerich, Johannes Kepler, https://www.encyclopedia.com/people/science-and-technology/astronomy-biographies/johannes-kepler#kjen14.

136

Цитируется по: Gingerich, Johannes Kepler, https://www.encyclopedia.com/people/science-and-technology/astronomy-biographies/johannes-kepler#kjen14.

137

Цитируется по: Gingerich, Johannes Kepler, https://www.encyclopedia.com/people/science-and-technology/astronomy-biographies/johannes-kepler#kjen14.

138

Цитируется по: Gingerich, Johannes Kepler, https://www.encyclopedia.com/people/science-and-technology/astronomy-biographies/johannes-kepler#kjen14.

139

Кеплер в Astronomia Nova , цитируется по Owen Gingerich, The Book Nobody Read: Chasing the Revolutions of Nicolaus Copernicus (New York: Penguin, 2005), 48.

140

Образующая конуса – прямая, соединяющая вершину с границей основания конуса. Все образующие конуса в совокупности дают боковую поверхность конуса. Прим. пер .

141

Цитируется по: Gingerich, Johannes Kepler, https://www.encyclopedia.com/people/science-and-technology/astronomy-biographies/johannes-kepler#kjen14.

142

Цитируется по: Martínez, Science Secrets, 34.

143

Koestler, The Sleepwalkers, 33.

144

Katz, Ideas of Calculus; Katz, History of Mathematics, главы 6 и 7; и Burton, History of Mathematics, 238–85.

145

Название происходит от написанного в IX веке трактата Мухаммада ибн Мусы аль-Хорезми «Китаб аль-джебр ва-ль-мукабала» – «Краткая книга о восполнении и противопоставлении». Под восполнением (аль-джебр) подразумевался перенос отрицательных членов в противоположную часть уравнения, чтобы они стали положительными (с отрицательными числами математики тогда не работали), под противопоставлением (аль-мукабала) – приведение подобных членов. Прим. пер .

146

С помощью вписанного 3072-угольника он получил π ≈ 3,1416. Затем, усовершенствовав свой метод, получил такое же приближение с помощью всего лишь 192-угольника. Прим. пер .

147

Katz, Ideas of Calculus, и J. J. O’Connor and E. F. Robertson, Abu Ali al-Hasan ibn al-Haytham, http://www-history.mcs.st-andrews.ac.uk/Biographies/Al-Haytham.html.

148

Золотой век ислама – период расцвета Арабского халифата, примерно с середины VIII до середины XIII века. Прим. пер .

149

Katz, History of Mathematics, 369–75.

150

Katz, History of Mathematics, 375–78.

151

Десятичные дроби изредка использовались и до Стевина, но широко распространились в Европе именно после его труда «Десятая» (De Thiende, 1585). Прим. пер .

152

Десятичной запятой в те времена не было. Стевин указывал над каждой цифрой номер соответствующего разряда. Прим. пер .

153

Alexander, Infinitesimal, обсуждает их споры с иезуитами по поводу бесконечно малых, которые считались опасными не только с математических, но и с религиозных позиций.

154

На самом деле, когда дело касается продуктов, речь всегда идет о т. н. больших калориях, или килокалориях (то есть тысячах калорий). Прим. пер .

155

О его жизни смотрите Clarke, Descartes; Simmons, Calculus Gems, 84–92; и Asimov, Asimov’s Biographical Encyclopedia, 106–8. Краткое изложение его математики и физики для широкой аудитории смотрите в книгах: Kline, Mathematics in Western Culture, 159–81; Edwards, The Historical Development; Katz, History of Mathematics, разделы 11.1 и 12.1; и Burton, History of Mathematics, раздел 8.2. Серьезный исторический анализ его трудов по математике и физике смотрите в работах: Michael S. Mahoney, Descartes: Mathematics and Physics, в Gillispie, Complete Dictionary, также онлайн в Encyclopedia Britannica, https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/descartes-mathematics-and-physics.

156

René Descartes, Les Passions de l’Ame (1649), Цитируется по: Guicciardini, Isaac Newton, 31.

157

После голландской армии в 1619 году Декарт поступил на баварскую службу и участвовал в Тридцатилетней войне – в частности, сражался в битве на Белой горе под Прагой в 1620 году. Вернувшись во Францию, он побывал на осаде Ла-Рошели. Повторно в Голландию на двадцать лет он уехал в 1628 году. Прим. пер .

158

Henry Woodhead, Memoirs of Christina, Queen of Sweden (London: Hurst and Blackett, 1863), 285.

159

Оптимальное рассмотрение можно найти в книге Mahoney, Mathematical Career. Живо и увлекательно о Ферма (словно автор был одним из участников описываемых событий) – Simmons, Calculus Gems, 96–105. Если вы не читали Симмонса, обязательно прочитайте.

160

Mahoney, Mathematical Career, глава 4.

161

Mahoney, Mathematical Career, 171.

162

Я согласен с оценкой в книге Simmons, Calculus Gems, 98, как следует распределять заслуги в отношении аналитической геометрии: «На первый взгляд кажется, что труд Декарта выглядит аналитической геометрией, но не является ею; в то время как труд Ферма так не выглядит, но является ею». Более взвешенные взгляды смотрите в книгах: Katz, History of Mathematics, 432–42, and Edwards, The Historical Development, 95–97.

163

Guicciardini, Isaac Newton, и Katz, History of Mathematics, 368–69.

164

Декарт, правило 4 в «Правилах для руководства ума» (1629), как Цитируется по Katz, History of Mathematics, 368–69.

165

Цитируется по: Guicciardini, Isaac Newton, 77.

166

Mahoney, Mathematical Career, 199–201, обсуждает работу Ферма по задаче максимизации, рассмотренной в основном тексте.

167

1 дюйм = 2,54 см. Прим. пер .

168

Mahoney, Mathematical Career, 162–65, и Katz, History of Mathematics, 470–72.

169

Austin, What Is… JPEG? и Higham et al., The Princeton Companion, 813–16.

170

Сайт Timeanddate.comпредоставит вам информацию для любого интересующего вас места.

171

Доступное введение в вейвлет-анализ и многочисленные приложения смотрите в: Dana Mackenzie, Wavelets: Seeing the Forest and the Trees, в Beyond Discovery: The Path from Research to Human Benefit, проекте Национальной Академии наук: http://www.nasonline.org/publications/beyond-discovery/wavelets.pdf. Затем попробуйте Kaiser, Friendly Guide, Cipra, Parlez-Vous Wavelets? или Goriely, Applied Mathematics, глава 6. Daubechies, Ten Lectures – знаковая серия лекций по вейвлетам Добеши.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесконечная сила [Как математический анализ раскрывает тайны вселенной] отзывы


Отзывы читателей о книге Бесконечная сила [Как математический анализ раскрывает тайны вселенной], автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x