Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
- Название:Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2021
- Город:Москва
- ISBN:978-5-00100-388-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.
Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
238
Лейбниц в письме де Боссу [355]в 1706 году. Цитируется по: Guicciardini, Reading the Principia, 159.
239
Например, нестандартный анализ Абрахама Робинсона, где рассматриваются гипердействительные числа. Прим. пер .
240
Термин «дифференциал» образован от латинского слова differentia – «разность». Прим. пер .
241
Лейбниц в письме де Боссу в 1706 году. Цитируется по: Guicciardini, Reading the Principia, 166.
242
Edwards, The Historical Development, 259.
243
Цитируется Edwards, The Historical Development, 259.
244
В этой записи смешиваются два разных x – тот x , что в левой части, совпадает с верхним пределом интегрирования в правой, но вот под знаком интеграла и в дифференциале – на деле другой. Фактически этот второй «немой», поскольку интегрировать можно по любой переменной. Чтобы не путаться, лучше использовать другую переменную интегрирования, так что этот интеграл может быть записан, например, как Прим. пер .
245
Буква S от лат. summa «сумма». Прим. пер .
246
Edwards, The Historical Development, 236–38. На самом деле Лейбница интересовала сумма величин, обратных треугольным числам, которая вдвое больше суммы, рассмотренной в тексте книги. Смотрите также Grattan-Guinness, From the Calculus, 60–62.
247
Отсылка к английской поговорке о скрытой цели, восходящей к «Гамлету». Полоний комментирует поведение Гамлета: «Хоть это и безумие, но в нем есть метод» (акт 2, сцена 2). Прим. пер .
248
Из письма Эренфриду Вальтеру фон Чирнхаусу [356]в 1679 году. Цитируется по Guicciardini, Reading the Principia, 145.
249
Статистику для ВИЧ и СПИД смотрите на сайте https://ourworldindata.org/hiv-aids/. Историю вируса и попыток с ним бороться смотрите на сайте https://www.avert.org/professionals/history-hiv-aids/overview.
250
Оппортунистические инфекции – это заболевания, которыми люди со здоровой иммунной системой обычно не болеют. Прим. пер .
251
The Stages of HIV Infection, AIDSinfo, https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/19/46/the-stages-of-hiv-infection.
252
Ho et al., Rapid Turnover; Perelson et al., HIV-1 Dynamics; Perelson, Modelling Viral and Immune System; и Murray, Mathematical Biology 1.
253
Результаты вероятностных расчетов впервые появились в работе: Perelson et al., Dynamics of HIV-1.
254
Gorman, Dr. David Ho.
255
Американское математическое общество, премия Макса Дельбрюка 2017 года в биологической физике, https://www.aps.org/programs/honors/prizes/prizerecipient.cfm?first_nm=Alan&last_nm=Perelson&year=2017.
256
Multidisciplinary Team Aids Understanding of Hepatitis C Virus and Possible Cure, Los Alamos National Laboratory, March 2013, http://www.lanl.gov/discover/publications/connections/2013–03/understanding-hep-c.php. Введение в математическое моделирование гепатита С смотрите в работе: Perelson and Guedj, Modelling Hepatitis C.
257
Из слов автора может сложиться впечатление, что многоклеточные организмы появились после кембрийского взрыва. Это не так – они встречались и в докембрии. Прим. пер .
258
О многих направлениях, отпочковавшихся от анализа с 1700-х до нашего времени, смотрите Kline, Mathematics in Western Culture; Boyer, The History of the Calculus; Edwards, The Historical Development; Grattan-Guinness, From the Calculus; Katz, History of Mathematics; Dunham, The Calculus Gallery; Stewart, In Pursuit of the Unknown; Higham et al., The Princeton Companion; и Goriely, Applied Mathematics.
259
Опцион – вид сделки, когда покупатель (продавец) получает право купить (продать) некий актив в будущем по заранее установленной цене. Прим. пер .
260
Peterson, Newton’s Clock; Guicciardini, Reading the Principia; Stewart, In Pursuit of the Unknown; и Stewart, Calculating the Cosmos.
261
Kline, Mathematics in Western Culture, 234– 86, о значительном влиянии, которое труды Ньютона оказали на ход западной философии, религии, эстетики и литературы, а также на науку и математику. Смотрите также W. Bristow, Enlightenment, https://plato.stanford.edu/entries/enlightenment/.
262
D. Brewster, Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton, том 2 (Edinburgh: Thomas Constable, 1855), 158.
263
Об удивительной истории этого яблока смотрите Gleick, Isaac Newton, 55–57, и примечание 18 на стр. 207. Смотрите также Martínez, Science Secrets, глава 3.
264
Черновик письма Ньютона Пьеру де Майзо, написанный в 1718 году; доступен в интернете по адресу: https://cudl.lib.cam.ac.uk/view/MS-ADD-03968/1349в собрании Библиотеки Кембриджского университета.
265
Ньютон не открывал закон обратных квадратов. Впервые идею, что движение планет может обеспечить сила притяжения, обратно пропорциональная квадрату расстояния, высказал в 1645 году французский астроном Исмаэль Буйо. Затем к ней приходили и другие ученые. Роберт Гук в 1679 году в явном виде сформулировал этот закон в письме к Ньютону и попросил математически обосновать его (что Ньютон и сделал). Однако Ньютон оспаривал приоритет Гука, ссылаясь на работы Буйо и Борелли, а также обсуждение этой идеи с Кристофером Реном еще до письма Гука. Ученый утверждал, что даже если бы впервые услышал об этом законе от Гука, то у него были некоторые права на него, потому что, в отличие от Гука, он его доказал: «Без моих демонстраций, с которыми господин Гук еще не знаком, никакой рассудительный философ не может поверить в его точность». Более того, по словам Ньютона, он знал об этом законе и раньше. Однако доказательств этому нет. В записях ученого 1669 года есть утверждение, что в случае кругового планетного движения «стремление отступить» (что позднее назовут центробежной силой) обратно пропорционально квадрату расстояния до центра, однако это не совсем то (хотя идеологически близко), и на язык центростремительной силы Ньютон перешел только после переписки с Гуком в 1679–1680 годах. Тем не менее эти записи показывают, что какие-то основания оспаривать приоритет Гука у Ньютона были. Специалисты продолжают спорить, что именно Ньютон позаимствовал у Гука (значительная часть личных бумаг Гука уничтожена или исчезла). Прим. пер .
266
Asimov, Asimov’s Biographical Encyclopedia, 138, дает одну из версий этой известной истории.
267
Katz, History of Mathematics, 516–19, описывает геометрические аргументы Ньютона. Guicciardini, Reading the Principia, обсуждает, как современники Ньютона реагировали на «Начала» и в чем состояла их критика (некоторые их возражения звучали убедительно). Современный вывод законов Кеплера из закона обратных квадратов дается в книге: Simmons, Calculus Gems, 326–35.
268
Следует помнить, что Евклид был систематизатором и сообщал (без упоминания авторства) результаты других греческих математиков – Теэтета, Архита, Евдокса, Гиппократа и так далее. Неизвестно, какие результаты в «Началах» принадлежат самому Евклиду. Прим. пер .
269
Jones, John Couch Adams, и Sheehan and Thurber, John Couch Adams’s Asperger Syndrome.
270
Положение Нептуна рассчитали независимо друг от друга Адамс и Леверье. На самом деле Нептун оказался в 12° от положения, предсказанного Адамсом, и в 1° от положения, предсказанного Леверье. Для сравнения: видимый диаметр Луны составляет примерно 0,5°. Прим. пер .
Читать дальшеИнтервал:
Закладка: