Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Тут можно читать онлайн Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент МИФ без БК, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-00100-388-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

211

Edwards, The Historical Development, 178–87, и Katz, History of Mathematics, 506–59, показывают этапы размышлений Ньютона, когда он получал свои результаты для степенных рядов.

212

Письмо 188 от Ньютона Ольденбургу от 24 октября 1676 года, в книге: Turnbull, Correspondence of Isaac Newton, 133.

213

Katz, Ideas of Calculus; Katz, History of Mathematics, 494–96.

214

Эта строка появляется в знаменитом первом письме ( epistola prior ) – ответе Ньютона на первый запрос Лейбница, отправленном через Генри Ольденбурга в качестве посредника; смотрите письмо 165 от Ньютона Ольденбургу от 13 июня 1676 года, в книге: Turnbull, Correspondence of Isaac Newton, 39.

215

Мэшап ( англ. mash-up – «смешивать композиции», буквально «толочь») – музыкальное произведение, которое создается путем наложения двух или нескольких исходных. Прим. пер .

216

Черновик письма Ньютона Пьеру де Майзо, написанный в 1718 году, когда Ньютон пытался доказать свой приоритет в изобретении анализа перед Лейбницем; доступен в интернете по адресу: https://cudl.lib.cam.ac.uk/view/MS-ADD-03968/1349в собрании библиотеки Кембриджского университета. Полная цитата захватывает дух: «В начале года 1665 я нашел метод аппроксимирующих рядов и правило для разложения любой степени любого бинома в такой ряд. В том же году в мае я установил метод касательных Грегори и Слюза, в ноябре у меня был прямой метод флюксий; в следующем году в январе – теория цветов; в следующем мае я пришел к обратному методу флюксий. В том же самом году я начал думать о тяготении, простирающемся до орбиты Луны, и (узнав, как оценить силу, с которой шар, вращающийся внутри сферы, давит на поверхность сферы) из правила Кеплера о времени обращения планет, находящемся в отношении полуторной степени (три к двум) к их расстояниям от центров их орбит, я вывел, что силы, которые удерживают планеты на их орбитах, должны быть обратно пропорциональны квадратам расстояний от центров, вокруг которых они обращаются: таким образом сравнил силу, необходимую для удержания Луны на ее орбите, с силой тяжести на поверхности Земли, и обнаружил, что они весьма хорошо соответствуют. Все это было в два чумных года – 1665 и 1666. В те дни я был в расцвете сил юности и думал о математике и философии больше, чем когда-либо впоследствии».

217

Цитируется по: Whiteside, The Mathematical Principles, отсылка к его ссылке 2.

218

Alexander, Infinitesimal, излагает историю яростных сражений Гоббса с Валлисом, которые были настолько же политическими, насколько математическими. Глава 7 говорит о Гоббсе как человеке, мнящем себя геометром.

219

Цитируется по: Stillwell, Mathematics and Its History, 164.

220

Цитируется по: Stillwell, Mathematics and Its History, 164.

221

Цитируется по: Guicciardini, Isaac Newton, 343.

222

Цитируется по: Guicciardini, Isaac Newton, 343.

223

Лукасовский профессор математики – это именная профессура в Кембридже, которую учредил в 1663 году Генри Лукас. Среди тех, кто занимал эту почетную должность после Барроу и Ньютона, были Бэббидж, Стокс, Дирак, Хокинг и другие первоклассные ученые. Прим. пер .

224

Письмо от Исаака Барроу к Джону Коллинзу от 20 августа 1669 года, Цитируется по: Gleick, Isaac Newton, 68.

225

Письмо 158 от Лейбница к Ольденбургу от 2 мая 1676 года, в книге: Turnbull, Correspondence of Isaac Newton, 4. Больше о переписке между Ньютоном и Лейбницем можно найти в работе: Mackinnon, Newton’s Teaser. Guicciardini, Isaac Newton, 354–61, дает особенно четкий и полезный анализ игры в математические кошки-мышки в письмах между Ньютоном и Лейбницем. Оригиналы писем есть в Turnbull, Correspondence of Isaac Newton; в частности смотрите письма 158 (первоначальная просьба Лейбница, отправленная Ньютону через Ольденбурга), 165 (первое письмо Ньютона, epistola prior, краткое и отпугивающее), 172 (просьба Лейбница о разъяснениях), 188 (второе письмо Ньютона, epistola posterior, которое написано вежливее и яснее, но предназначено для демонстрации того, кто тут хозяин) и 209 (Лейбниц отвечает ударом на удар, хотя и вежливо, и дает понять, что тоже владеет анализом).

226

Одна из самых известных колкостей в epistola prior, письме 165 от Ньютона Ольденбургу от 13 июня 1676 года. Смотрите Turnbull, Correspondence of Isaac Newton, 39.

227

Письма 188 от Ньютона Ольденбургу от 24 октября 1676 года, Turnbull, Correspondence of Isaac Newton, 130.

228

Письма 188 от Ньютона Ольденбургу от 24 октября 1676 года, Turnbull, Correspondence of Isaac Newton, 130.

229

Письма 188 от Ньютона Ольденбургу от 24 октября 1676 года, Turnbull, Correspondence of Isaac Newton, 130.

230

Turnbull, Correspondence of Isaac Newton. Шифрование скрывает знание Ньютоном основной теоремы и центральных проблем анализа: «задано уравнение с любым количеством флюэнт, найти флюксии, и наоборот». Смотрите также стр. 153, прим. 25.

231

Код Ньютона 6accdae13eff7i3l9n4o4qrr4s8t12vx означает количество букв (6 букв a, 2 буквы c и так далее) и полностью записывается так: aaaaaa cc d ae eeeeeeeeeeeee ff iiiiiii lll nnnnnnnnn oooo qqqq rr ssss ttttttttt uuuuuuuvvvvv x (ae – это латинский диграф [составной письменный знак], а u и v в латыни долгое время были вариантами одной буквы, поэтому у Ньютона 12v означает общее количество u и v). Этот набор букв – анаграмма латинской фразы Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire: et vice versa («Задано уравнение с любым количеством флюэнт, найти флюксии; и наоборот»), с помощью которой Ньютон описал суть своих открытий. Такие анаграммы были широко распространены в XVII–XIX веках, поскольку одновременно выполняли две функции: надежно скрывали открытие (например, ученый хотел сначала произвести его надежную проверку) и одновременно подтверждали авторство (ведь шансы на то, что из этих букв можно составить описание какого-то другого открытия, крайне малы). Прим. пер .

232

Письмо от Лейбница маркизу Лопиталю, 1694, фрагменты в Child, Early Mathematical Manuscripts. Также Цитируется по книге: Edwards, The Historical Development, 244.

233

Mates, Philosophy of Leibniz, 32.

234

Mates, Philosophy of Leibniz, 32.

235

О жизни Лейбница смотрите работы Hofmann, Leibniz in Paris; Asimov, Asimov’s Biographical Encyclopedia; и Mates, Philosophy of Leibniz. О философии Лейбница смотрите Mates, Philosophy of Leibniz. О математике Лейбница смотрите Child, Early Mathematical Manuscripts; Edwards, The Historical Development; Grattan-Guinness, From the Calculus; Dunham, Journey Through Genius; Katz, History of Mathematics; Guicciardini, Reading the Principia; Dunham, The Calculus Gallery; Simmons, Calculus Gems; Guicciardini, Isaac Newton; Stillwell, Mathematics and Its History; и Burton, History of Mathematics.

236

Особенно хороша работа Edwards, The Historical Development, глава 9. Смотрите также Katz, History of Mathematics, раздел 12.6, и Grattan-Guinness, From the Calculus, глава 2.

237

Например, он писал: «Мы должны прикладывать усилия, чтобы уберегать чистую математику от метафизических споров. Мы достигнем этого, если перестанем беспокоиться, реальны ли бесконечно большие и бесконечно малые в величинах, в числах или в линиях, а будем использовать бесконечно большие и бесконечно малые как подходящие выражения для сокращения рассуждений». Цитируется по: Guicciardini, Reading the Principia, 160.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесконечная сила [Как математический анализ раскрывает тайны вселенной] отзывы


Отзывы читателей о книге Бесконечная сила [Как математический анализ раскрывает тайны вселенной], автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x