Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• LPSolve — линейное программирование;

• LSSolve — улучшенная реализация метода наименьших квадратов;

• QPSolve — квадратичное программирование;

• NLPSolve — нелинейное программирование.

Функция ImportMPC обеспечивает ввод данных для оптимизации из файла, а функций Interactive позволяет работать с интерактивным Maplet-окном для оптимизации.

С пакетом Optimization можно познакомиться по его справке. В ее разделе Examples есть довольно обширный документ с примерами применения пакета — дополнительными к тем, которые даются к функциям пакета в справке. Начало этого документа представлено на рис. 6.3. В нем представлены основные задачи, решаемые пакетом Optimization — линейное, квадратичное и нелинейное программирование, а также приближение данных и функциональных зависимостей методом наименьших квадратов (нелинейная регрессия).

Рис 63 Начало документа с примерами применения пакета Optimization 662 - фото 806

Рис. 6.3. Начало документа с примерами применения пакета Optimization

6.6.2. Работа с функциями Minimize и Maximize

Функции Minimize и Maximize служат для поиска минимумов и максимумов математических выражений с учетом ограничений самыми современными численными методами. Функции записываются в виде:

Minimize(obj [, constr, bd, opts])

Minimize(opfobj [, ineqcon, eqcon, opfbd, opts])

Maximize(obj [, constr, bd, opts])

Maximize(opfobj [, ineqcon, eqcon, opfbd, opts])

Параметры функций следующие:

• obj — алгебраический объект, целевая функция;

• constr — список с ограничивающими условиями;

• bd — последовательность вида name=range, задающая границы для одной или более переменных;

• opts — равенство или равенства вида option=value, где option одна из опции feasibilitytolerance, infinitebound, initialpoint, iterationlimit или optimalitytolerance, специфицированных в команде Minimize или Maximize.

• opfobj — процедура, целевая функция;

• ineqcon — множество или список процедур с ограничениями типа неравенств;

• eqcon — множество или список процедур с ограничениями типа равенств;

• opfbd — последовательность пределов; границы для всех переменных; Примеры применения этих функций представлены ниже:

> Maximize(sin(х)/х);

[1., [х=2.93847411867272567 10 -11]]

> Minimize(х^2+у^2);

[0., [х=0., у=0.]]

> Minimize(sin(х)/х, initialpoint={x=5});

[-0.217233628211221636 , [х=4.49340945792364720 ]]

> Maximize(sin(x*y*z));

[1., [x=1.16244735150962364, z=1.16244735150962364, y=1.16244735150962364]]

> Minimize(2*х+3*y, {3*х-y<=9, х+y>=2}, assume=nonnegative);

[4., [х=2., y=0.]]

Из этих примеров видно, что результаты вычислений представляются в виде чисел с плавающей точкой с так называемой двойной точностью (правильнее было бы сказать с двойной длиной или разрядностью). При вычислениях используются алгоритмы группы NAG и решатели, описанные ниже.

6.6.3. Линейное программирование — LPSolve

Для решения задач линейного программирования в пакете Optimization введена функция:

LPSolve(obj [, constr, bd, opts])

Она имеет следующие параметры:

• obj — алгебраическое выражений, целевая функция;

• constr — множество или список линейных ограничений;

• bd — последовательность вида name=range, задающая границы одной или многих переменных;

• opts — равенство или равенства в форме option=value, где option одна из опций assume, feasibilitytolerance, infinitebound, initialpoint, iterationlimit или maximize, специализированных для команды LPSolve.

Пример на решение задачи линейного программирования дан на рис. 6.4. Здесь оптимизируется целевая функция -3x-2у, которая линейно зависит от переменных х и у. В этом примере интересна техника графической визуализации решения.

Рис 64 Пример решения задачи линейного программирования Эта функция может - фото 807

Рис. 6.4. Пример решения задачи линейного программирования

Эта функция может задаваться также в матричной форме:

LPSolve(c [, lc, bd, opts])

Здесь с вектор, задающий целевую функция, остальные параметры были определены выше. Пример применения функции LPSolve в матричном виде представлен ниже:

> с := Vector([-1,4,-2], datatype=float):

bl := Vector([2,3,1], datatype=float):

bu := Vector([5,8,2.5], datatype=float):

LPSolve(с, [], [bl, bu]);

┌ ┌ ┐┐

│ │ 5. ││

│ │ ││

│2.,│ 3. ││

│ │ ││

│ │ ││

└ └2.50000000000000000┘┘

Ряд других подобных примеров применения функции LPSolve можно найти в справке по этой функции.

6.6.4. Квадратичное программирование — QPSolve

Для реализации квадратичного программирования служит функция

QPSolve(obj, constr, bd, opts)

С параметрами, описанными выше для функции LPSolve. Пример реализации квадратичного программирования представлен на рис. 6.5. Здесь оптимизируется выражение -3х²-2y², которое квадратично зависит от переменных x и у. Здесь также интересна техника визуализации квадратичного программирования.

Рис 65 Пример квадратичного программирования Эта функция также может быть - фото 808

Рис. 6.5. Пример квадратичного программирования

Эта функция также может быть записана в матричной форме:

QPSolve(obj, lc, bd, opts)

Пример применения этой функции дан ниже:

> с := Vector([2, 5.1 , datatype=float):

H := Matrix([[6, 3], [3, 4]], datatype=float):

A := Matrix([[-1,1]], datatype=float):

b := Vector([-2], datatype=float): QPSolve([с, H], [A, b]);

┌ ┌0.46666666666666564┐┐

│-3.5333333333333,│ ││

│ │-1.6000000000000030││

└ └ ┘┘

Ряд подобных примеров можно найти в справке по данной функции.

6.6.5. Нелинейное программирование — NLPSolve

Нелинейное программирование позволяет решать задачи оптимизации при нелинейных зависимостях целевой функции от ее аргументов. Для этого в пакете Optimization имеется функция:

NLPSolve(obj, constr, bd, opts)

NLPSolve(opfobj, ineqcon, eqcon, opfbd, opts)

Ее параметры те же, что и у ранее описанных функций. В связи с этим ограничимся парой примеров ее применения при целевых функциях одной и двух переменных:

> NLESolve(х*ехр(-х), х=0..6, maximize);

[0.367879441171442278, [х=0.99999998943752966]]

> NLPSolve(х*y*ехр(-х)*ехр(-y), х=0..6, y=0..6,maximize);

[0.135335283236612674, [х=0.99999999994630706, y=1.00000000003513966]]

В оптимизируемых функциях этих примеров присутствует экспоненциальная зависимость, что и указывает на решение задачи нелинейного программирования. Однако следует отметить, что ограничения должны быть линейными — в противном случае возвращается сообщение об ошибке с указанием на необходимость обеспечения линейности ограничивающих условий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x