Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

> А: = [[1,2],[3,4]];

А:= [[1,2], [3, 4]]

> eval(А);

[[1,2], [3, 4]]

> evalf(sin(1));

.8414709848

> evalf(sin(2)^2+cos(2)^2,20);

1.0000000000000000000

> evalhf(sin(1));

.841470984807896505

> evalm(20*A+1);

Maple 9510 в математике физике и образовании - изображение 182

> 1<3;

1<3

> evalb(1<3);

true

> readlib(shake) : evalr(min(2,sqrt(3) )) ;

√3

> evalr(abs(x));

INTERVAL(INTERVAL(, 0..∞), -INTERVAL(, -∞..0))

> shake(Pi,3);

INTERVAL(3.1102..3.1730)

В дальнейшем мы многократно будем применять функции оценивания для демонстрации тех или иных вычислений.

3.5.3. Последовательности выражений

Maple может работать не только с одиночными выражениями, но и с последовательностями выражений. Последовательность выражений — это ряд выражений, разделенных запятыми и завершенный фиксатором (файл expr1):

> a, y+z, 12.3, cos(1.0);

a, y + z, 12.3, .5403023059

Для автоматического формирования последовательности выражений применим специальный оператор $, после которого можно указать число выражений или задать диапазон формирования выражений:

> f$5;

f,f,f,f,f

> $1..5;

1, 2, 3, 4, 5

> (n^2)$5;

n², n², n², n², n²

> (n^2)$n=0..5;

0, 1, 4, 9, 16, 25

> Vl[i]$i=1..5;

Vl 1, Vl 2, Vl 3, Vl 4, Vl 5

Для создания последовательностей выражений можно использовать также функцию seq:

> seq(sin(х),х=0..5);

0, sin(1), sin(2), sin(3), sin(4), sin(5)

> seq(sin(x*1.),x=0..5);

0., .8414709848, .9092974268, .1411200081, -.7568024953, -.9589242747

> seq(f1(1.),f1=[sin,cos,tan]);

.8414709848, .5403023059, 1.557407725

> sin(1.0), cos(1.0), tan(1.0);

.8414709848, .5403023059, 1.557407725

3.5.4. Вывод выражений

При выполнении порой даже простых операций результаты получаются чрезвычайно громоздкими. Для повышения наглядности выражений Maple выводит их с выделением общих частей выражений и с присваиванием им соответствующих меток. Метки представлены символами %N, где N — номер метки.

Помимо меток при выводе результатов вычислений могут появляться и другие специальные объекты вывода, например корни RootOf, члены вида O(x^n), учитывающие погрешность при разложении функций в ряд, и обозначения различных специальных функций, таких как интегральный синус, гамма-функция и др. Примеры такого вывода приведены ниже:

> solve(х^7-х^2-1,х);

½+½I√3, ½-½I√3, RootOf(_Z 5+ _Z 4 - _Z 2- _Z - 1, index = 1),
RootOf(_Z 5+ _Z 4- _Z 2- _Z - 1, index = 2),
RootOf(_Z 5+ _Z 4- _Z 2- _Z - 1, index = 3 ),
RootOf(_Z 5+ _Z 4- _Z 2- _Z - 1, index = 4),
RootOf(_Z 5+ _Z 4- _Z 2- _Z - 1, index = 5)

> taylor(sin(x),x,5);

Maple 9510 в математике физике и образовании - изображение 183

Часто встречаются также знаки ~ для отметки предполагаемых переменных, постоянные интегрирования и другие специальные обозначения. По мере упоминания в тексте таких объектов вывода они будут описаны.

3.5.5. Работа с частями выражений

Выражения (expr) или уравнения (eqn) обычно используются как сами по себе, так и в виде равенств или неравенств. В последнем случае объекты с выражениями имеют левую и правую части. Для простейших манипуляций с выражениями полезны следующие функции:

• cost(a) — возвращает число сложений и умножений в выражении а (функция пакета codegen);

• lhs(eqn) — выделяет левую часть eqn;

• rhs(eqn) — выделяет правую часть eqn;

• normal(expr) — дает нормализацию (сокращение) expr в виде дроби;

• numer(expr) — выделяет числитель expr;

• denom(expr) — выделяет знаменатель expr.

Ввиду очевидности действия этих функций ограничимся наглядными примерами их применения:

> with(codegen,cost):

> cost(х^3+b^2-х);

2 additions + 3 multiplications

> lhs(sin(x)^2+cos(x)^2=1);

sin(x)² + cos(x)²

> rhs(sin(x)^2+cos(x)^2=1);

1

> normal(2/4+3/6+6/12);

Maple 9510 в математике физике и образовании - изображение 184

> f:=5*(a-b)^2/(а^2-2*а*b-b^2);

Maple 9510 в математике физике и образовании - изображение 185

> numer(f);

5 (a-b)²

> denom(f);

a²-2ab-b²

Обратите внимание на то, что в старых версиях (до Maple 7) загрузка библиотечной функции cost выполнялась иначе — командой readlib(cost). Это обстоятельство может служить причиной неверной работы документов, созданных в старых версиях Maple, в среде последующих версий Maple.

3.5.6. Работа с уровнями вложенности выражений

В общем случае выражения могут быть многоуровневыми и содержать объекты, расположенные на разных уровнях вложенности. Приведем две функции для оценки уровней выражений и списков:

• nops(expr) — возвращает число объектов первого уровня (операндов) в выражении expr;

• op(expr) — возвращает список объектов первого уровня в выражении expr;

• op(n,expr) — возвращает n-й объект первого уровня в выражении expr. Ниже представлены примеры применения этих функций:

> nops(а+b/с);

2

> op(a+b/c);

картинка 186

> op(1,a+b/c);

а

> op(2,a+b/c);

картинка 187

Рекомендуется просмотреть и более сложные примеры на применение этих функций в справке.

3.5.7. Преобразование выражений в тождественные формы

Многие математические выражения имеют различные тождественные формы. Порою преобразование выражения из одной формы в другую позволяет получить результат, более удобный для последующих вычислений. Кроме того, различные функции Maple работают с разными формами выражений и разными типами данных. Поэтому большое значение имеет целенаправленное преобразование выражений и данных.

Основной функцией для такого преобразования является функция

convert: convert(expr, form, arg3,...)

Здесь expr — любое выражение, form — наименование формы, arg3, … — необязательные дополнительные аргументы.

convert — простая и вместе с тем очень мощная функция. Ее мощь заключается в возможности задания множества параметров. Их полный перечень (около восьмидесяти наименований) можно найти в справке по функции convert. Многие из этих параметров очевидны с первого взгляда, поскольку повторяют наименования типов чисел, данных или функций. Например, опции binary, decimal, hex и octal преобразуют заданные числа в их двоичное, десятичное, шестнадцатиричное и восьмеричное представление. Параметр vector задает преобразование списка в вектор (напоминаем, что список и вектор — разные типы данных), а параметр matrix — в матрицу. Приведем примеры применения функции convert (файл expr1):

> convert(123,binary);

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x