Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании
- Название:Maple 9.5/10 в математике, физике и образовании
- Автор:
- Жанр:
- Издательство:СОЛОН-Пресс
- Год:2006
- Город:Москва
- ISBN:5-98003-258-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание
Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.
Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
> convert([a,b,с,d],`+`);
> f:=seq(x[i]^n,i=1..4);
> x:='x'; convert(sinh(x),ехр);

> convert(1.234567,fraction);

> convert(1/7,float);
> convert(sin(I*x),exp);

> convert(sinh(x),exp);

> convert(arcsinh(x),ln);

> convert(12345,list);
> convert(binomial(m,n),factorial);

> convert([[1,2],[3,4],[5,6]],table);
> convert(-Pi,signum);
> s:=taylor(sin(x),x,8);

> p:=convert(s,polynom);

> convert(p,float);
> f:=(х^4+х)/(x^2-1);

> convert(f, parfrac, x);

> s:=series(f,x,5);
> convert(s,polynom);# Удаление члена ряда, описывающего погрешность
Из этих примеров (их список читатель может пополнить самостоятельно) следует, что функция преобразования convert является одной из самых мощных функций Maple. С ее помощью можно получить множество различных форм одного и того же выражения.
3.5.8. Преобразование выражений
Еще одним мощным средством преобразования выражений является функция combine. Она обеспечивает объединение показателей степенных функций и преобразование тригонометрических и некоторых иных функций. Эта функция может записываться в трех формах:
combine(f)
combine(f, n)
combine(f, n, opt1, opt2,...)
Здесь f — любое выражение, множество или список выражений; n — имя, список или множество имен; opt1, opt2, … — имена параметров. Во втором аргументе можно использовать следующие функции:
@@ abs arctan conjugate ехр
ln piecewise polylog power product
Psi radical range signum trig
Примеры применения функции combine представлены ниже (файл expr1):
> combine(ехр(2*х)^2,ехр);
> combine(2*sin(х)^2+2*cos(х)^2);
> combine(sin(х)*cos(х));
> combine(Int(х,x=a..b)-Int(х^2,x=a..b));

Эти примеры далеко не исчерпывают возможности функции combine в преобразовании выражений. Рекомендуется обзорно просмотреть примеры применения функции combine с разными параметрами, приведенные в справочной системе Maple.
3.5.9. Контроль за типами объектов
Выражения и их части в Maple рассматриваются как объекты. В ходе манипуляций с ними важное значение имеет контроль за типом объектов. Одной из основных функций, обеспечивающих такой контроль, является функция whattype(object), возвращающая тип объекта, например string, integer, float, fraction, function и т.д. Могут также возвращаться данные об операторах. Примеры применения этой функции даны ниже (файл control):
> whattype(2+3);
> whattype(Pi);
> whattype(123./5);
> whattype(1/3);
> whattype(sin(x));
> whattype([1, 2, 3, a, b, c]);
> whattype(a+b+c);
> whattype(a*b/c);
> whattype(a^b);
> whattype(1+2+3=4);
С помощью функции type(object,t) можно выяснить, относится ли указанный объект к соответствующему типу t, например:
> type(2+3,integer);
> type(sin(х),function);
> type(hello,string);
> type("hello",string);
> type(1/3,fraction);
При успешном соответствии типа объекта указанному (второй параметр), функция type возвращает логическое значение true, в противном случае — false.
Для более детального анализа объектов может использоваться функция hastype(expr, t), где expr — любое выражение и t — наименование типа подобъекта.
Эта функция возвращает логическое значение true, если подобъект указанного типа содержится в выражении expr. Примеры применения этой функции даны ниже (файл control):
> hastype(2+3,integer);
> hastype(2+3/4,integer);
> hastype(2*sin(x),function);
> hastype(a+b-c/d,`+`);
Еще одна функция — has(f,x) — возвращает логическое значение true, если подобъект х содержится в объекте f, и false в ином случае:
> has(2*sin(х),2);
> has(2*sin(x), `/`);
> has(2*sin(x),3-1);
Следует отметить, что соответствие подобъекта выражения указанному подобъекту понимается в математическом смысле. Так, в последнем примере подобъект «3-1», если понимать его буквально, в выражении 2*sin(x) не содержится, но Maple-язык учитывает соответствие 3-1=2, и потому функция has в последнем примере возвращает true.
Функция has может использоваться для выявления той или иной математической операции, оператора или функции. Однако надо соблюдать определенные правила, поскольку выражение, анализируемое функцией has оценивается и исполняется. Внимательно проанализируете приведенные ниже примеры:
> has(2*sin(2),sin);
> has(2*sin(2),'sin');
> has(2*sin(2.), 'sin');
Здесь надо учесть, что выражение 2*sin(2) после оценки и исполнения не меняется, поскольку Maple, при целочисленном аргументе функции синуса, не вычисляет ее и вычисленное выражение совпадает с исходным и содержит функцию синуса. Однако sin(2.) уже вычисляется и становится числом. Именно поэтому в последнем примере функция sin уже не обнаруживается. Подобное имеет место и в ряде других примеров с функцией интегрирования:
> has('int(х^2,х)',int);
> has(int(х^2,х),int);
> int(х^2,х);

> has(int(х^2,х), х^3/3);
rue
Столь же поучителен пример с идентификацией функции интегрирования. Так, has(int(х^2, х), int); дает false, поскольку интеграл оценивается и вычисляется, что ведет к подмене выражения на х^3/3 уже не содержащего признаков интегрирования. Это и поясняют два последних примера, в которых вычислено значение интеграла и функция has дает значение true для значения интеграла. В тоже время заключение int(x^2,x) в апострофы позволяет найти имя функции интегрирования int, поскольку исходное выражение в этом случае представлено в неисполняемой форме и содержит обращение к этой функции.
Читать дальшеИнтервал:
Закладка: