Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
parametrizationх4y4ах2y2by3хyt Z - фото 453

> parametrization(х^4+y^4+а*х^2*y^2+b*y^3,х,y,t);

Z periodmatrixf1хуRiemann 4103 Построение алгебраических - фото 454

> Z := periodmatrix(f1,х,у,Riemann);

4103 Построение алгебраических кривых класса knot Функция plotknot - фото 455

4.10.3. Построение алгебраических кривых класса knot

Функция plot_knot позволяет строить одну или несколько алгебраических кривых — узлов. Пример построения целого семейства узлов показан на рис. 4.37.

Рис 437 Семейство узлов Для лучшего обзора таких кривых рекомендуется - фото 456

Рис. 4.37. Семейство узлов

Для лучшего обзора таких кривых рекомендуется воспользоваться возможностью вращения трехмерных фигур мышью для уточнения угла, под которым рассматривается фигура — в нашем случае семейство алгебраических кривых.

Начиная с версии Maple 7 в пакет расширения Algcurves добавлена новая функция импликативной графики plot_real_curve. Она строит алгебраическую кривую для действительной части полиномиального выражения и записывается в виде:

plot_real_curve(р, х, у, opt)

Функция имеет следующие параметры:

p — полиномиальное выражение переменных x и у задающее алгебраическую кривую;

opt — параметр, который может быть записан в форме приведенных ниже выражений:

showArrows=true или false — задает показ стрелок касательных или перпендикулярных к точкам вдоль кривой (по умолчанию false);

arrowIntervalStep=posint — задает число точек, пропускаемых до показа очередной пары стрелок (по умолчанию 10);

arrowScaleFactor=positive — задает масштаб для длины стрелок (по умолчанию 1);

colorOfTangentVector=с — задает цвет касательных стрелок, по умолчанию заданный как зелёный, COLOR(RGB,0,1.0);

colorOfNormalVector=с — задает цвет перпендикулярных стрелок, по умолчанию заданный как красный, COLOR(RGB,1,0,0);

colorOfCurve=с — задает цвет кривой, по умолчанию заданный как синий, COLOR(RGB, 0, 0, 1);

eventTolerance=positive — задает погрешность при представлении сингулярных точек (по умолчанию 0,01).

NewtonTolerance=positive — задает погрешность при выполнении ньютоновских итераций в ходе построений.

Функция plot_real_curve вычисляет и строит алгебраическую кривую по точкам. Применение функции plot_real_curve показывает рис. 4.38.

Рис 438 Примеры применения функции plotrealcurve 411 Векторные - фото 457

Рис. 4.38. Примеры применения функции plot_real_curve

4.11. Векторные вычисления и функции теории поля

4.11.1. Пакет векторных вычислений VectorCalculus

В Maple 8 были существенно расширены возможности вычислений над векторами (пространственными объектами) и поверхностями. Для этого введен пакет VectorCalculus, который, при вызове, открывает доступ ко многим командам и функция векторного анализа, теории поля и приложений дифференциального исчисления [67, 68] (файл vc):

> restart; with(VectorCalculus); interface(showassumed=0);

Warning, the assigned names <,> and <|> now have a global binding

Warning, these protected names have been redefined and unprotected:

*, +, Vector, diff, int, limit, series

[&x, *, +, ., <, >, <|>, AddCoordinates, ArcLength, BasisFormat, Binormal, CrossProduct, Curl, Curvature, Del, DirectionalDiff, Divergence, DotProduct, Flux, GetCoordinateParameters, GetCoordinates, Gradient, Hessian, Jacobian, Laplacian, LineInt, MapToBasis, Nabla, PathInt, PrincipalNormal, RadiusOfCurvature, ScalarPotential, SetCoordinateParameters, SetCoordinates, SurfaceInt, TNBFrame, Tangent, TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential, Wronskian, diff, evalVF, int, limit, series]

Нетрудно заметить, что данный пакет после загрузки видоизменяет многие операторы, команды и функции, встроенные в ядро системы. При этом меняется их математический и физический смысл. Поэтому пользоваться пакетом надо с известной осторожностью. Для восстановления роли функций можно использовать команду restart.

Пакет VectorCalculus ориентирован в первую очередь на решение задач математической физики, использующих методы теории поля и приложения дифференциального исчисления. Он оперирует такими привычными для физиков (разумеется, и для математиков) понятиями, как поток векторного поля, градиент, тор-сион, векторный потенциал и др. Приведенный ниже материал поясняет применение большинства функций этого пакета. Полезно просмотреть и файл VectorCalculus.mws, содержащий примеры его применения. В Интернете можно найти целую серию уроков по векторному анализу и теории поля в виде пакета Calculus IV или V (разработчик проф. J. Wagner).

4.11.2. Объекты векторных вычислений

Вектор в геометрическом представлении в данном пакете по умолчанию задается в прямоугольной системе координат:

> v := Vector( [x,y,z]);

v := хе х+ ye y + ze z

Здесь е х , е у и е z — проекции единичного вектора ена оси координат х, у и z. Тип координатной системы (по умолчанию — прямоугольная) можно определить следующим образом:

> attributes(v);

coords = cartesian

Для создания векторного поля служит функция

VectorField(v, с)

где v — вектор и с — опционально заданный параметр в форме name[name, name,...], задающий тип координатной системы.

Можно изменить систему координат, например, задав (с помощью функции установки координат SetCoordinates) полярную систему координат:

> SetCoordinates(polar);

polar

> w := ;

w: = r e r+ θ e 0

> attributes(w);

coords = polar

Аналогично можно задать вектор в сферической системе координат:

> SetCoordinates(spherical[r,phi,theta]);

spherical r,φ,θ

> F := VectorField();

F.= rē r

> attributes(F);

vectorfield, coords = spherical r,φ,θ

Можно также сменить формат представления вектора и выполнить с ним некоторые простейшие векторные операции:

> BasisForrnat(false);

true

> v := ;

Maple 9510 в математике физике и образовании - изображение 458

> BasisFormat(true);

false

> v;

ae r+ bе φ+ce θ

> SetCoordinates(polar);

polar

> MapToBasis(, 'cartesian');

r cos(θ)e x+ r sin(θ)e y

> SetCoordinates(spherical);

spherical

> MapToBasis(, 'cartesian');

r sin(φ)cos(θ)e x+ r sin(φ)sin(θ)e y+ r cos(φ)е z

> SetCoordinates(spherical[r,phi,theta]);

spherical r,φ,θ

> MapToBasis(VectorField(), 'cartesian'[x,y,z]);

хē х+ yē y+ zē z

Пакет VectorCalculus предусматривает возможность задания новой системы координат с помощью команды:

AddCoordinates(newsys, eqns, owrite)

где newsys — спецификация новой системы координат в виде symbol[name, name, …]; eqns — соотношения между координатами новой системы и прямоугольной системы координат, представленные в виде list(algebraic); owrite — заданное опционально равенство.

4.11.3. Основные операции с векторами

В данном пакете переопределены некоторые основные операции над векторами. Прежде всего, это операции сложения (+) и скалярного умножения (*), которые поясняются следующими примерами (файл vop) :

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x