Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Тут можно читать онлайн Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы - бесплатно ознакомительный отрывок. Жанр: Математика, издательство «ОНИКС 21 век» «Мир и Образование», год 2003. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Сборник задач по математике с решениями для поступающих в вузы
  • Автор:
  • Жанр:
  • Издательство:
    «ОНИКС 21 век» «Мир и Образование»
  • Год:
    2003
  • Город:
    Москва
  • ISBN:
    5-329-00766-6, 5-94666-080-2
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы краткое содержание

Сборник задач по математике с решениями для поступающих в вузы - описание и краткое содержание, автор Альберт Рывкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.

Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.

Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Сборник задач по математике с решениями для поступающих в вузы - читать онлайн бесплатно ознакомительный отрывок

Сборник задач по математике с решениями для поступающих в вузы - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Альберт Рывкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Соединения и бином

Эта глава содержит задачи по комбинаторике, а также задачи, связанные с возведением в степень двучлена ax + b . Выражение ( ax + b ) называют биномом Ньютона и рассматривают, как правило, его разложение в ряд по степеням x и коэффициенты этого разложения — они зависят от а и b — при различных степенях x .

Комбинаторика изучает всевозможные комбинации из элементов данного конечного множества. Простейшие из таких комбинаций: перестановки, размещения и сочетания.

Перестановки состоят из одних и тех же элементов некоторого множества и отличаются одна от другой только порядком их расположения. Число всех возможных перестановок для множества, состоящего из n различных элементов, обозначают P ( n ):

P ( n ) = 1 · 2 · 3 · ... · n = n ! (1)

Символ n ! (читается «эн факториал») обозначает произведение первых n чисел натурального ряда: 1! = 1, 2! = 2, 3! = 6, 4! = 24, ... . По определению 0! = 1.

Следующий вид комбинаций — размещения из n различных элементов, образующих множество, в группы по k различных элементов в каждой. При этом два размещения считают разными, если они отличаются либо элементами, либо порядком их расположения. Подобные ситуации возникают при размещении постояльцев в гостинице, зрителей в театральном зале, пассажиров в поезде. Число всех возможных размещений по k различных элементов в каждом размещении, формируемых из n различных элементов данного множества, обозначают А n k . Имеет место формула:

Сочетания из n элементов по k элементов комбинации составленные из данных n - фото 288

Сочетания из n элементов по k элементов — комбинации, составленные из данных n элементов и содержащие по k ( kn ) элементов в каждой, отличающиеся одна от другой хотя бы одним элементом. С — число сочетаний из n по k :

Наряду с соединениями в которые каждый из n различных элементов некоторого - фото 289

Наряду с соединениями, в которые каждый из n различных элементов некоторого фиксированного множества входит один раз, можно рассматривать соединения с повторениями, допускающие появление одного и того же элемента более одного раза.

Если задан алфавит из n различных букв и поставлена задача составить всевозможные слова по k букв в каждом, то речь идет о размещениях с повторениями. Обратите внимание на то обстоятельство, что слова могут быть любой длины, а потому нет необходимости в выполнении ограничения kn . Слова aba и baa считаются различными (входящие в них элементы образуют разные последовательности).

Число Сборник задач по математике с решениями для поступающих в вузы - изображение 290всевозможных различных размещений с повторениями из n различных элементов по k элементов в каждом находится по формуле

Сборник задач по математике с решениями для поступающих в вузы - изображение 291

Доказывается эта формула с помощью рекуррентного соотношения

Сборник задач по математике с решениями для поступающих в вузы - изображение 292

которое устанавливается следующим рассуждением. Если первая буква в слове из k букв фиксирована, то в оставшиеся k − 1 ячеек можно разметить буквы картинка 293способами. Для каждого из этих способов остается n возможностей для выбора буквы, стоящей на первом месте. В результате мы получим все размещения с повторениями из n по k .

Размещения с повторениями, образованные из n элементов a 1, a 2, ..., а n так, что каждый из этих элементов входит в размещение по крайней мере один раз, называются перестановками с повторениями. Если известно, что элемент a 1входит α 1раз, элемент a 2входит α 2раз, ..., элемент a n входит α n раз, то число всевозможных таких перестановок обозначают Сборник задач по математике с решениями для поступающих в вузы - изображение 294 и оно может быть найдено по формуле

Два сочетания с повторениями из n элементов по k в каждом считаются различными - фото 295

Два сочетания с повторениями из n элементов по k в каждом считаются различными тогда и только тогда, когда они отличаются по крайней мере одним элементом или какой-нибудь элемент входит в эти соединения различное число раз. Число всевозможных сочетаний с повторениями определяется по формуле

Сборник задач по математике с решениями для поступающих в вузы - изображение 296

вывод которой состоит в доказательстве того факта, что допущение о возможности повторений элементов равносильно увеличению числа элементов, из которых образуются сочетания, на k − 1.

Для любого натурального n справедливы разложения

Для биномиальных коэффициентов справедливы равенства 211Сколькими - фото 297

Для биномиальных коэффициентов справедливы равенства:

211Сколькими различными способами можно усадить за круглый стол n человек - фото 298

21.1.Сколькими различными способами можно усадить за круглый стол n человек, если два способа считаются одинаковыми, когда каждый человек имеет тех же соседей (левый и правый соседи не различаются).

21.2.Имеется одна перестановка из пяти элементов: а 1, а 2, а 3, а 4, а 5. Найдите число всех перестановок из этих элементов, в каждой из которых на первом месте стоит элемент, отличный от а 1, а на втором — элемент, отличный от а 2.

21.3.Сколько можно образовать семизначных чисел из цифр 1, 2, 3, ..., 8 с тем, чтобы цифра 2 входила в каждое число не меньше, чем три раза?

21.4.Сколько восьмизначных чисел можно образовать из цифр 0, 1, 2, 3, 4, 5, если в каждом числе цифра 1 содержится три раза, а остальные цифры по одному разу?

21.5.Экскурсанты заказали на пароходе 8 четырехместных кают. Все места в каждой из кают и все каюты равноценны. Сколькими способами могут экскурсанты разместиться в каютах, если их 32 человека?

21.6.Вычислите сумму

217Найдите все значения n при которых какиелибо три последовательных - фото 299

21.7.Найдите все значения n , при которых какие-либо три последовательных коэффициента разложения бинома ( x + а ) n являются тремя последовательными членами арифметической прогрессии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Сборник задач по математике с решениями для поступающих в вузы отзывы


Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x