Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания
- Название:φ – Число Бога. Золотое сечение – формула мироздания
- Автор:
- Жанр:
- Издательство:Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a
- Год:2015
- Город:Москва
- ISBN:978-5-17-094497-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание
Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…
Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.
φ – Число Бога. Золотое сечение – формула мироздания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Даже если согласиться с представлением о математике как об изобретении человеческого разума, не имеющем отношения к реальности, которое основано исключительно на физиологии и психологии, все равно придется отвечать на два интересных вопроса: почему математика так замечательно описывает Вселенную и как так вышло, что даже продукты чистейшей математики зачастую соответствуют физическим явлениям – более того, идеально к ним подходят?
Ответ, который дают на оба эти вопроса сторонники теории «человеческого изобретения», также основан на биологической модели: дело в эволюции и естественном отборе. Идея в том, что прогресс в понимании Вселенной и формулировании математических законов, описывающих происходящие в ней явления, достигается посредством масштабного и мучительного эволюционного процесса. Нынешняя модель Вселенной – результат долгой эволюции, в которой было множество фальстартов и тупиков. Естественный отбор уничтожил математические модели, не соответствовавшие наблюдениям и экспериментам, и оставил только удачные. Согласно этой точке зрения все «теории» Вселенной на самом деле не более чем «модели», качества которых определяются исключительно тем, насколько им удается соответствовать данным наблюдений и экспериментов. Безумная модель солнечной системы Кеплера, о которой он написал в своей « Mysterium Cosmographicum », была вполне приемлемой, пока объясняла и предсказывала поведение планет.
То, как часто и с каким успехом результаты чистой математики переходят в область математики прикладной, согласно этой картине, отражает всего лишь перепроизводство концепций, из которых физика отбирает самые подходящие для своих нужд: вот оно, выживание сильнейших! Вот и Годфри Г. Харди, как подчеркивают сторонники теории человеческого изобретения, гордился, что за всю жизнь «не сделал ничего «полезного». Такое представление о математике разделяет, очевидно, и Мэрилин вос Савант, обладательница самого высокого в мире IQ – целых 228! Часто цитируют ее слова: «Я склонна думать, что можно изобрести математическое объяснение чего угодно, и материя – не исключение».
По моему скромному мнению, исчерпывающего ответа на загадку эффективности математики не дает ни модифицированная платоническая точка зрения, ни теория естественного отбора (по крайней мере, в традиционной формулировке).
Утверждать, будто математика – изобретение чисто человеческое и так замечательно объясняет явления природы исключительно благодаря эволюции и естественному отбору, значит упускать некоторые важные факты, относящиеся как к природе математики, так и к истории теоретических моделей вселенной. Во-первых, хотя математические законы – например, аксиомы геометрии или теории множеств – и в самом деле творения человеческого разума, однако, сформулировав эти законы, мы сразу же теряем свободу. Определение золотого сечения берется из аксиом Евклидовой геометрии, определение чисел Фибоначчи – из аксиом теории чисел. Однако тот факт, что отношение двух последовательных чисел Фибоначчи сходится к золотому сечению, нам некоторым образом навязан, мы, люди, здесь ничего не решаем и не обладаем свободой выбора. А следовательно, математические объекты, пусть и воображаемые, все же обладают реальными свойствами. Во-вторых, объяснение непостижимого могущества математики нельзя основывать исключительно на эволюции в узком смысле слова. Например, когда Ньютон выдвинул теорию гравитации, данные, которые он пытался истолковать, были точны в лучшем случае до третьего знака после запятой. Однако его математическая модель силы, возникающей между двумя массами во Вселенной, обладает необычайной точностью – больше одной миллионной. Получается, что эта модель не была навязана Ньютону имеющимися на тот момент измерениями движения планет, с одной стороны, а с другой – Ньютон не втискивал природное явление в уже имеющийся математический паттерн. Более того, естественный отбор в общепринятой интерпретации этой концепции здесь вообще ни при чем: дело не в том, что соревновались пять теорий и Ньютонова победила. Нет – теория Ньютона была единственной!
Однако и модифицированное платоническое представление тоже не без изъянов.
Во-первых, важный принципиальный момент: модифицированное платоническое представление о математике на самом деле никак не объясняет, почему математика так замечательно описывает Вселенную. Она лишь подменяет этот вопрос аксиомой, убеждением, что математика лежит в основе физического мира. Просто предполагается , что математика – это символическая копия Вселенной. Роджер Пенроуз – как я уже отмечал, горячий сторонник платонического мира математических форм, – соглашается, что то, «какую именно поразительную роль играет платонический мир математики в физическом мире», остается загадкой. Физик из Оксфордского университета Дэвид Дойч некоторым образом выворачивает этот вопрос наизнанку. В своей книге «Структура реальности» (1997) он спрашивает: «Откуда же берется математическая точность в реальности, состоящей из физики и толкуемой естественнонаучными методами?» Пенроуз добавляет к загадочной эффективности математики еще две тайны. В своей книге «Тени разума» он задается вопросами: «Каким образом столь выдающийся феномен, как разум, может быть объяснен в понятиях материального физического мира?» и «Как вышло, что разум способен «создавать» математические концепции из своего рода умственной модели?» Эти интересные вопросы, совершенно выходящие за рамки нашей книги, имеют отношение к происхождению сознания и к поразительной способности наших довольно-таки примитивных ментальных орудий пробивать дорогу в платонический мир, который для Пенроуза и составляет объективную реальность.
Вторая проблема, связанная с модифицированным платоническим представлением, – это вопрос универсальности . До какой степени мы уверены, что законы, которым обязана подчиняться Вселенная, обязательно следует представлять в виде математических уравнений именно того типа, в каком мы их формулируем? Пожалуй, большинство физиков на Земле до последнего времени твердо заявили бы, что история показала, что математические уравнения – единственный способ, которым можно формулировать законы физики. Однако все может измениться благодаря книге «Новый вид науки» Стивена Вольфрама ( Stephen Wolfram . A New Kind of Science). Вольфрам – один из самых оригинальных мыслителей в области теории комплексных систем и научных компьютерных расчетов, и главное его детище – « Mathematica », пакет компьютерных программ, позволяющих производить некоторые вычисления, которые до него было невозможно делать с помощью компьютера. После создания этого пакета Вольфрам десять лет молчал, а затем представил публике провокационную книгу, где смело претендует на то, чтобы сменить самую инфраструктуру науки. В мире, где все уже более трехсот лет привыкли, что базовый строительный материал для моделей природы в естественных науках – это математические уравнения, Вольфрам предлагает перейти на простые компьютерные программы. Он предполагает, что главная тайна природы – это применение простых программ для генерирования сложности.
Читать дальшеИнтервал:
Закладка: