Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания
- Название:φ – Число Бога. Золотое сечение – формула мироздания
- Автор:
- Жанр:
- Издательство:Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a
- Год:2015
- Город:Москва
- ISBN:978-5-17-094497-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание
Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…
Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.
φ – Число Бога. Золотое сечение – формула мироздания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Вольфрам придерживается очень похожих взглядов. Я спрашивал его, как он считает, «изобрели» математику или «открыли». Он ответил: «Если бы не было особого выбора и нам пришлось принять именно эту систему законов и правил, имело бы смысл говорить, что ее открыли, но поскольку выбор был, и еще какой, а наша математика основана исключительно на исторической договоренности, я бы сказал, что ее изобрели». Ключевые слова – «историческая договоренность»: они заставляют предположить, что система аксиом, на которых основана наша математика, возникла случайно на основе арифметики и геометрии древних вавилонян. Это тут же наталкивает на два вопроса: (1) Почему вавилоняне развивали именно эти дисциплины, а не стали разрабатывать другие наборы правил? И, перефразируя вопрос о том, как математика описывает мироздание: (2) Почему эти дисциплины и их следствия вообще пригодились в физике?
Интересно, что ответы на оба вопроса, вероятно, взаимосвязаны. Возможно, математику как таковую породило наше субъективное восприятие устройства природы. Не исключено, что геометрия попросту отражает человеческую способность легко распознавать линии, грани и кривые. А арифметика – человеческую способность группировать дискретные объекты. При такой картине мира математика, которой мы располагаем, – следствие биологического устройства человека и того, как люди воспринимают мироздание . Таким образом, математика и вправду в некотором смысле представляет собой язык вселенной – но вселенной в человеческом восприятии. Если во Вселенной есть другие разумные цивилизации, они, вероятно, разработали совсем другие системы законов, ведь у них, наверное, совсем другие механизмы восприятия. Скажем, если капля воды сливается с другой каплей или молекулярное облако в галактике сливается с другим облаком, они составляют одну каплю и одно облако, а не два. Так что если существует цивилизация, где тела в основном жидкие, а не твердые, один плюс один для нее не обязательно равняется двум. Такая цивилизация, возможно, не знает, что такое простые числа и золотое сечение. Другой пример: едва ли можно сомневаться, что если бы гравитация на Земле была гораздо сильнее, вавилоняне и Евклид сформулировали бы не Евклидову геометрию, а какую-нибудь другую. Общая теория относительности Эйнштейна научила нас, что в очень сильном гравитационном поле пространство вокруг нас искривилось бы, перестало быть плоским: лучи света шли бы по кривой, а не по прямой линии. Геометрия Евклида – всего-навсего плод наблюдений за слабым гравитационным полем Земли (другие геометрии – на искривленных поверхностях – были открыты и разработаны только в XIX веке).
Эволюция и естественный отбор, несомненно, сыграли важнейшую роль в наших теориях мироустройства. Именно поэтому мы в наши дни больше не придерживаемся физических взглядов Аристотеля. Однако я не имею в виду, что эволюция всегда идет плавно и непрерывно. Биологической эволюции на Земле это отнюдь не было свойственно. Извилистый путь жизни на Земле то и дело формировался под воздействием внешних причин, например, массовой гибели того или иного вида. Влияние астрономических тел – комет или астероидов по нескольку миль в диаметре – истребило динозавров и проложило млекопитающим путь к доминированию. Эволюция теорий об устройстве Вселенной то и дело двигалась рывками благодаря квантовым скачкам в научной мысли. Прекрасные примеры подобных блистательных рывков – Ньютонова теория всемирного тяготения и теория общей относительности Эйнштейна («До сих пор не понимаю, как он до нее додумался», – говорил покойный физик Ричард Фейнман). Как же объяснить подобные чудесные открытия? Никак. В том же смысле, как невозможно объяснить, каким образом в мире шахмат, привыкшем к победам с перевесом в пол-очка, Бобби Фишер на пути к мировому первенству в 1971 году ни с того ни с сего разгромил гроссмейстеров Марка Тайманова и Бента Ларсена со счетом шесть – ноль. И так же трудно разобраться, как натуралисты Чарльз Дарвин (1809–1882) и Альфред Рассел Уоллес (1823–1913) независимо друг от друга вывели концепцию эволюции как таковой – что вдохновило их, что подтолкнуло к мысли, что вся жизнь на земле произошла из общего источника, развивавшись разными путями? Нужно просто признать, что кое-кто на голову выделяется из толпы и ему приходят в голову фантастические мысли. Но вписываются ли исполины-новаторы вроде Ньютона и Эйнштейна в теорию эволюции и естественного отбора? Да, вписываются, однако для этого приходится толковать естественный отбор несколько иным, не общепринятым способом. У теории всемирного тяготения во времена Ньютона не было конкуренток, однако она не дожила бы до наших дней, не будь она «самой приспособленной». Напротив, Кеплер предложил модель взаимодействия Солнца и планет, которая протянула совсем недолго: согласно этой модели Солнце, вращаясь вокруг своей оси, испускает лучи магнетической силы. Предполагалось, что эти лучи цепляются за планеты и подталкивают их по круговым орбитам.
Если принять общие определения эволюции, допускающей квантовые скачки, и естественного отбора, действующего в течение длительного времени, то, пожалуй, можно найти объяснение «непостижимой» эффективности математики. Наша математика – символическая репрезентация вселенной в том виде, в каком мы ее воспринимаем , и могущество математики постоянно растет благодаря изысканиям человека.
Джеф Раскин, создатель компьютера «Макинтош» в корпорации «Эппл», подчеркивает иной аспект – эволюцию человеческой логики. В эссе об эффективности математики, опубликованном в 1998 году, Раскин приходит к выводу, что «человеческая логика [курсив мой. – М. Л. ] навязана нам физическим миром и поэтому соответствует ему. Математика выведена из логики. Вот почему математика точно описывает физический мир».
В пьесе «Тамерлан великий», где идет речь о герое-злодее маккиавеллиевского толка, который одновременно может быть и нежной душой, и жестоким убийцей, великий английский драматург Кристофер Марло (1564–1593) признает страсть человека к познанию Вселенной:
Из четырех враждующих стихий
Создав людей, природа в них вложила
Тревожный и неукротимый дух:
Он постигает стройный ход созвездий
И дивную гармонию вселенной,
Пылает ненасытной жаждой знанья,
Мятется, как далекий рой планет;
Он нам велит идти, искать, стремиться…
Золотое сечение есть продукт геометрии, которую изобрели люди. Однако люди не представляли себе, в какую волшебную страну заведет их это изобретение. Если бы мы не изобрели геометрию, то, вероятно, вообще не знали бы ничего о золотом сечении. Однако – кто знает? – возможно, мы получили бы его в результате работы короткой компьютерной программы.
Читать дальшеИнтервал:
Закладка: