Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Тут можно читать онлайн Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 28. Математика жизни. Численные модели в биологии и экологии.
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0723-6
  • Рейтинг:
    3.4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии. краткое содержание

Том 28. Математика жизни. Численные модели в биологии и экологии. - описание и краткое содержание, автор Рафаэль Лаос-Бельтра, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Том 28. Математика жизни. Численные модели в биологии и экологии. - читать онлайн бесплатно полную версию (весь текст целиком)

Том 28. Математика жизни. Численные модели в биологии и экологии. - читать книгу онлайн бесплатно, автор Рафаэль Лаос-Бельтра
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1980-е годы исследователь Уэлдон заметил, что этой функцией не очень точно описывается рост опухолей малых размеров, поскольку в ней не учтены некоторые биологические аспекты, в частности роль иммунной системы. В поправке Уэлдона утверждается, что на первом этапе роста опухоли раковые клетки не сражаются за доступные ресурсы, и их рост описывается экспоненциальным законом, или моделью Мальтуса. Однако по достижении некоторого критического размера рост опухоли будет описываться уже не моделью Мальтуса, а функцией Гомпертца.

* * *

МАТЕМАТИКА И НОВЫЕ ПУТИ ИССЛЕДОВАНИЯ

В 2005 году исследователь Антонио Бру из мадридского университета Комплутенсе предположил, что на поздних стадиях раковые заболевания можно излечивать, вызывая сильное и продолжительное воспаление тканей вокруг опухоли. Эта гипотеза стала результатом математических исследований роста раковых клеток. В ходе исследований было отмечено, что рост всех клеток подчиняется одной схеме, которую Бру назвал схемой универсальной динамики роста опухолей. В этой модели клетки на границе опухоли играют определяющую роль в методе лечения, предложенном Бру. Первоначальное скептическое отношение к гипотезе отчасти было вызвано тем, что использованная математическая модель отличалась от классических моделей раковых заболеваний. Во-первых, в ней предполагалось, что рост клеток подчиняется не экспоненциальному, а линейному закону, а во-вторых, считалось, что рост опухоли зависит не от количества питательных веществ, а от свободного пространства. Это прекрасный пример того, как математика подсказывает исследователям новые пути лечения рака.

Математическая модель и результат компьютерного моделирования роста раковой - фото 52

Математическая модель и результат компьютерного моделирования роста раковой опухоли.

* * *

СПИД, свиной грипп и другие заболевания, которые можно изучить с помощью математики

В 1983 году французский исследователь Люк Монтанье описал вирус СПИДа, или ВИЧ (вирус иммунодефицита человека). Он представляет собой сферу диаметром 100 нанометров и имеет внешнюю белковую оболочку. Вирусологи называют этот вирус ретровирусом, так как его геном образован цепочкой РНК. По данным Всемирной организации здравоохранения, в 2006 году в мире насчитывалось примерно 39,3 миллиона человек, зараженных вирусом СПИДа, примерно 24 миллиона из них проживали на Африканском континенте.

В 2009 году средства массовой информации сообщили о начале пандемии свиного гриппа. По данным Всемирной организации здравоохранения, возбудителем заболевания является вирус H1N1/09. Его геном представляет собой смесь ДНК птиц, свиней и человека, поэтому вирус способен преодолевать межвидовые барьеры. Свиной грипп был самой популярной темой в СМИ летом и осенью 2009 года. Изначально процент смертельных случаев среди заболевших был высоким, однако со временем он снизился, что совпало с началом широкого использования противовирусных препаратов.

Подобные заболевания, носящие характер пандемии, становятся источником напряженности в обществе. Как санитарные службы всего мира прогнозируют и отслеживают распространение заболеваний? Как определяется момент начала эпидемии в определенной стране? Когда следует начинать вакцинацию людей, входящих в группу риска? Ответы на эти вопросы дает ряд математических моделей, составляющих формальное ядро эпидемиологии, которая изучает факторы, влияющие на здоровье и заболеваемость населения. Эпидемиология привлекла внимание математиков еще в начале XX века, а сегодня она стала одной из областей изучения математической биологии.

Первыми, кто рассмотрел эпидемии с точки зрения математики, были Уильям Хаммер и Рональд Росс. Для анализа эти ученые применили закон действующих масс. Позднее Лоуэлл Рид и Уэйд Фрост разработали модель Рида — Фроста, связав число здоровых людей, восприимчивых к заболеванию ( S ), число заболевших ( I ) и число людей, невосприимчивых к заболеванию.

Анализировать распространение заболеваний специалистам вновь помогают дифференциальные уравнения. Допустим, что численность населения составляет N человек, из которых I заражены вирусом. Это означает, что число здоровых людей равно N — I . Так как люди, зараженные вирусом, живут рядом со здоровыми, последние подвергаются риску заражения ( S ). Следовательно, S = N — I .

В одной из классических моделей эпидемиологии утверждается, что изменение числа зараженных в зависимости от времени описывается дифференциальным уравнением: I' = k · I ·( N — I ). В упрощенном виде оно выглядит так: I' = k · I · S . Решением этого дифференциального уравнения будет знаменитое логистическое уравнение, описывающее ход любой эпидемии:

Обратите внимание что в начале эпидемии то есть при t стремящемся к нулю - фото 53

Обратите внимание, что в начале эпидемии (то есть при t , стремящемся к нулю) логистическое уравнение будет приблизительно эквивалентным уравнению экспоненциального роста, то есть уравнению модели Мальтуса. Это отражает тот факт, что в начале эпидемии число зараженных резко увеличивается. В случае с заболеваниями, которые становятся причиной напряжения в обществе, например СПИДом или свиным гриппом, сообщения о росте эпидемии, распространяемые СМИ, только усугубляют панику.

Если предположить, что предельное число заболевших равно числу здоровых людей, восприимчивых к заболеванию, то есть N, то начиная с определенного момента рост эпидемии замедлится, как и рост числа новых заболевших, I . Это значение, столь важное для органов здравоохранения любой страны, достигается, когда число заболевших I составляет половину численности восприимчивого к вирусу населения, то есть N /2. После этого количество новых случаев заболевания стабилизируется вплоть до окончания эпидемии.

В настоящее время благодаря использованию компьютерного моделирования можно оценить распространение эпидемии (например, сезонного гриппа), что позволяет органам здравоохранения формировать календарь вакцинации населения.

В эпидемиологии используются такие компьютерные программы, как Epigrass, Any Logic Model-Builder и STEM ( Spatio Temporal Epidemiological Modeler ).

Число e и колония бактерий Escherichia coli

Нет такой области науки, где рано или поздно не появилось бы число е , будь то молекулярная биология или статистика, физика или химия. Это вездесущее число обнаруживается во множестве природных явлений. Число е — иррациональное. Это означает, что его десятичная запись никогда не заканчивается и не повторяется, что роднит его с числом π . Считается, что число е открыл Якоб Бернулли при изучении следующего предела:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Рафаэль Лаос-Бельтра читать все книги автора по порядку

Рафаэль Лаос-Бельтра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 28. Математика жизни. Численные модели в биологии и экологии. отзывы


Отзывы читателей о книге Том 28. Математика жизни. Численные модели в биологии и экологии., автор: Рафаэль Лаос-Бельтра. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x