Моррис Коэн - Введение в логику и научный метод

Тут можно читать онлайн Моррис Коэн - Введение в логику и научный метод - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Социум, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Введение в логику и научный метод
  • Автор:
  • Жанр:
  • Издательство:
    Социум
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-91603-029-7
  • Рейтинг:
    4/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Моррис Коэн - Введение в логику и научный метод краткое содержание

Введение в логику и научный метод - описание и краткое содержание, автор Моррис Коэн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках. Как синтетический курс логики и научной методологии не имеет аналога среди отечественных учебников.

Значительная часть книги посвящена исследованию проблем прикладной логики: экспериментальным исследованиям, индукции, статистическим методам, анализу оценочных суждений.

В книге дается анализ предмета логики и природы научного метода, рассмотрение той роли, которую методы логики играют в научном познании, а также критика многих альтернативных подходов к истолкованию логики и науки в целом. В этом отношении она представляет собой самостоятельное философское произведение и будет интересна специалистам в области философии и методологии науки.

Для преподавателей логики, философии науки, теории аргументации и концепций современного естествознания, студентов, изучающих логику и методологию науки.

Введение в логику и научный метод - читать онлайн бесплатно ознакомительный отрывок

Введение в логику и научный метод - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Моррис Коэн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако эти же два угла оказываются больше двух прямых углов, ибо AF, CG являются такими же параллельными, как и FB, GD, поэтому, если прямая, пересекающая AF, CG, делает внутренние углы больше двух прямых, то прямая, пересекающая FB, GD, также сделает внутренние углы больше двух прямых.

Однако эти же углы также и меньше двух прямых углов, ибо четыре угла AFG, CGF\ BFG, DGF равны четырем прямым углам, что невозможно.

Сходным образом 2) мы можем показать, что прямая, пересекающая две параллельные прямые, не делает внутренние углы одной и той же стороны меньше, чем два прямых угла.

Однако 3) если она не делает их ни больше, ни меньше двух прямых углов, то она может сделать внутренние углы на одной и той же стороне только равными двум прямым углам» [122] .

Обосновано ли доказательство Птолемея? Следует ли теорема 29 с необходимостью из приведенных аксиом и постулатов без пятого постулата? Рассмотрим более подробно рассуждение, которое мы выделили курсивом. Птолемей утверждает, что если мы допустим, что углы AFG, CGF больше двух прямых углов, то мы также должны допустить, что BFG, DGF также больше (равно как и меньше) двух прямых углов, поскольку все, что истинно для внутренних углов, находящихся на одной стороне секущей FG, с необходимостью одновременно истинно и для внутренних углов, находящихся на другой стороне секущей. Однако данное допущение не включено в постулаты. Птолемей защищает его, утверждая, что AF, CG также параллельны в одном направлении, как FB, GD в другом. Однако это просто сводится к утверждению о том, что через точку F можно провести только одну прямую, параллельную прямой CD. Данное допущение в точности эквивалентно постулату 5, который он и пытается доказать [123] .

Таким образом, доказательство Птолемея неудовлетворительно, и более тщательный анализ его рассуждения смог бы продемонстрировать ему, что это именно так. На самом деле мы знаем, что нельзя показать, что пятый постулат является необходимым следствием остальных постулатов, поскольку можно доказать, что он является независимым от остальных постулатов. Метод доказательства независимости разобран в главе VIII. На данном же этапе читателю следует обратить внимание на то, что строгое разложение аргумента на ряд шагов позволяет обнаружить все допущения, требующиеся для того, чтобы доказательство было обоснованным. Признание делаемых нами допущений и готовность исследовать все их возможные альтернативы являются отличительным признаком метода науки. Этот метод является единственной доступной нам гарантией от догматизма и самонадеянности.

2. Вторым примером значимого в историческом смысле «доказательства» является попытка доказать одно важное суждение в элементарной алгебре. Без сомнения, читатель знаком с правилом, согласно которому произведение двух отрицательных чисел всегда является положительным. Так, (-3) × (-4) = (+ 12). Можно ли доказать данное суждение? Разумеется, доказательство будет возможным, только если другие суждения будут приняты в качестве посылок. Оказывается, что алгебра тоже может разрабатываться систематически на основании аксиом, относящихся к сложению и умножению количеств. Поэтому наш вопрос должен быть сформулирован следующим образом: можно ли доказать, что суждение о том, что произведение двух отрицательных чисел является положительным, является логическим следствием допущений, относящихся к сложению и умножению только положительных чисел?

К сожалению, систематический анализ алгебры является крайне абстрактным, и его понимание требует существенной интеллектуальной зрелости,

поэтому новичкам данный материал излагается просто в виде набора некоторых - фото 114

поэтому новичкам данный материал излагается просто в виде набора некоторых правил. Однако иногда осуществляются попытки приведения доказательств и для важных правил, и следующий аргумент зачастую приводится для обоснования суждения о произведении двух отрицательных чисел. Данный аргумент нацелен на то, чтобы показать, что правило умножения отрицательных чисел является необходимым следствием правил умножения и сложения положительных чисел.

Приведенный выше четырехугольник имеет стороны а и Ь соответственно. Его площадь, согласно теореме планиметрии, равна ab. Площадь меньшего незаштрихованного прямоугольника со сторонами, равными (а – с) и (Ь – d) соответственно, равна (а – с)(Ь – d). Теперь выразим эту последнюю площадь в терминах большего прямоугольника и меньших заштрихованных прямоугольников. Анализ данной фигуры показывает, что площадь незаштрихованной фигуры может быть получена сначала путем вычитания из большого прямоугольника прямоугольника, который заштрихован вертикально (его площадь равна Ьс), а также горизонтально заштрихованного прямоугольника (его площадь равна ad), а затем путем прибавления прямоугольника, заштрихованного обоими способами (его площадь равна cd). Таким образом, мы можем записать уравнение 1:

(а – с)(Ь – d) = ab – be – ad + cd.

Далее припишем а и Ь значение нуль. Тогда мы получим уравнение 2:

(0 – с)(0 – d) = 0 × 0 – 0 × с – 0 × d + cd;

или уравнение 3:

(-c)(-d) = (+cd).

В общем, заключением доказательства является положительное произведение двух отрицательных величин.

Является ли данное доказательство обоснованным? Читатель с легкостью увидит, что не является, поскольку уравнение 1 было развито на основе предположения, что а и Ь не равны нулю. Мы не можем получить уравнение 3 из уравнения 1, если не введем дополнительное допущение, что уравнение 1 будет истинным для всех возможных значений а и Ь. Однако это дополнение эквивалентно допущению о том, что все законы, распространяющиеся на сложение и умножение положительных чисел, также истинны и для отрицательных чисел. Но именно это суждение изначально и доказывалось.

На самом деле мы знаем, что правила оперирования отрицательных чисел независимы от правил оперирования положительных чисел. В очередной раз становится очевидной ценность разложения аргумента на составляющие его шаги. Точно так же как изучение допущений, требующихся для доказательства пятого постулата Евклида, привели Лобачевского и Больяя к открытию неевклидовых геометрий, так и исследование основополагающих правил алгебры привели сэра Уильяма Р. Гамильтона и Г. Г. Грассмана к открытию различных алгебраических систем. Без неевклидовых геометрий вряд ли было бы возможно развитие более сложной общей алгебры и современной физики. Важно отметить, что метод, требующий проявления всех требующихся для доказательства допущений, а также беспристрастные исследования всех альтернатив подобных допущений имеют далеко идущие следствия. Наилучший способ прояснить значимость логического метода для цивилизации – это задуматься о том, какую роль он сыграл в истории развития науки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Моррис Коэн читать все книги автора по порядку

Моррис Коэн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Введение в логику и научный метод отзывы


Отзывы читателей о книге Введение в логику и научный метод, автор: Моррис Коэн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x