Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь

Тут можно читать онлайн Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2019
  • ISBN:
    978-5-04-161431-7
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь краткое содержание

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - описание и краткое содержание, автор Кит Йейтс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Многие из нас боятся математики и не любят ее. Можно сказать даже, ненавидят. А зря.
Математические истории Кита Йейтса наглядно демонстрируют, как математика наполняет нашу жизнь и управляет ею.
Каждая из глав посвящена одному математическому принципу, например теории вероятности, и демонстрирует, как эта концепция реализуется в повседневной жизни.
Вы узнаете о несправедливых судебных решениях, основанных на математических ошибках; о тянущихся последствиях катастрофы в Чернобыле; о том, как манипулируют статистикой и предотвращают эпидемии. И все это благодаря королеве наук.
Доступность подачи материала, отсутствие сложных математических формул, наглядная демонстрация важности математики в нашей жизни – вот главные принципы книги.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - читать онлайн бесплатно ознакомительный отрывок

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Кит Йейтс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Первой ошибкой Мидоу было предположение, что случаи синдрома внезапной детской смерти являются полностью независимыми событиями. Эта ложная посылка позволила ему при расчете вероятности того, что смерть двух детей в одной семье будет вызвана СВДС, просто перемножить число 8543 на самое себя. В результате он получил, что вероятность такого события составит примерно 1 на каждые 73 миллиона удачных родов. Пытаясь обосновать свои предположения, он даже заявил: «Нет никаких доказательств того, что “смерти в колыбели” происходят в семьях серийно, зато серийному жестокому обращению с детьми доказательств множество». С этой цифрой на руках он предположил, что при уровне рождаемости в Великобритании, составляющем около 700 тысяч человек в год, две подряд «смерти в колыбели» можно было бы ожидать примерно раз в 100 лет.

Его допущение было исключительно некорректным. Известно много факторов повышения риска СВДС. В их число входят курение, преждевременные роды и даже сон в одной постели с родителями. В 2001 году исследователи Манчестерского университета выделили генетические маркеры, связанные с регулированием иммунной системы, которые также повышают риск СВДС [92] Summers, A. M., Summers, C. W., Drucker, D. B., Hajeer, A. H., Barson, A., & Hutchinson, I. V. (2000). Association of IL-10 genotype with sudden infant death syndrome. Human Immunology, 61 (12), 1270–73. https://doi.org/10.1016/S0198–8859 (00) 00183-X . С тех пор обнаружили множество других генетических факторов, также увеличивающих вероятность СВДС [93] Brownstein, C. A., Poduri, A., Goldstein, R. D., & Holm, I. A. (2018). The genetics of Sudden Infant Death Syndrome. In SIDS: Sudden Infant and Early Childhood Death: The Past, the Present and the Future. Dashash, M., Pravica, V., Hutchinson, I. V., Barson, A. J., & Drucker, D. B. (2006). Association of Sudden Infant Death Syndrome with VEGF and IL-6 Gene polymorphisms. Human Immunology, 67 (8), 627–33. https://doi.org/10.1016/J.HUMIMM.2006.05.002 . У родных братьев и сестер много общих генов – соответственно, риск развития СВДС у них выше. Если от СВДС умирает один ребенок, то вполне вероятно, что в семье действуют какие-то сопутствующие факторы риска. Следовательно, вероятность второй смерти в такой семье будет выше, чем в среднем по населению. В действительности считается, что в Великобритании ежегодно происходит хотя бы один случай СВДС у второго ребенка.

Рис 9 Древо решений для поиска вероятности выбора черных или белых шариков - фото 13

Рис. 9. Древо решений для поиска вероятности выбора черных или белых шариков. Для вычисления вероятности выбора черного или белого шарика при каждой попытке следуйте за соответствующими ветвями древа и умножайте вероятности на каждом шаге. Так, вероятность вытащить черный шарик с первой попытки составляет 1/100. При второй попытке мы выбираем из того же мешка, который мы выбрали при первой попытке. Вероятности каждой комбинации из двух вариантов показаны справа от пунктирной линии

Давайте смоделируем ситуацию, в которой мы сможем вычислить аналог вероятности смерти от СВДС. Возьмем десять мешочков с мраморными шариками. В девяти таких мешочках по десять белых шариков. В десятом же – девять белых и один черный. Эти стартовые условия представлены слева на рис. 9. На первом шаге вы выбираете произвольный мешок, а в нем – произвольный шарик. Поскольку шариков всего 100 и выбор любого из них одинаково возможен, вероятность выбора черного шарика на первом шаге составляет 1 из 100. На втором шаге вы возвращаете шарик обратно в тот же мешочек и вытаскиваете из него же еще один, игнорируя остальные мешочки. Если на первом шаге вы вытянули черный шарик, то вы знаете, что и во второй раз выбираете из набора, в котором этот шарик точно есть. Это значительно повышает вероятность выбора черного шарика – до 1 из 10, а не 1 из 100. В этом сценарии выбор двух черных шариков подряд (с вероятностью 1 к 1000) намного более вероятен, чем при простом перемножении исходной вероятности выбора одного черного шарика на саму себя (что даст вероятность удачного исхода в 1 к 10 000). В случае с вероятностью смерти второго ребенка от СВДС, если первый умер от этого синдрома, математика аналогична – вероятность растет.

При реальном расчете угрозы СВДС факторы риска для каждой семьи не выбираются случайным образом из всего их многообразия; они уже заданы заранее – можно утверждать, что с самого начала вы либо выбираете из мешочка с черным шариком в нем, либо из другого, в котором черного шарика заведомо нет. Эта альтернативная интерпретация проиллюстрирована в виде двух деревьев принятия решений на рис. 10. Если вам достался мешочек с черным шариком в обоих случаях, то вероятность выбора двух черных шариков возрастает до 1 к 100. Таким образом очевидно, что простое перемножение общепопуляционного фактора фонового риска развития СВДС на самого себя при вычислении вероятности развития СВДС для конкретного случая – некорректный прием.

Рис 10 Два альтернативных древа принятия решений где мешочек из которого вы - фото 14

Рис. 10. Два альтернативных древа принятия решений, где мешочек, из которого вы выбираете, жестко задан заранее для обеих попыток выбора. Для каждого древа вероятность выпадения каждой из двухвариантных комбинаций выбора показаны справа от пунктирной линии. Очевидно, что если мы выбираем из мешочка, где черного шарика нет, то единственная возможность – это выпадение двух белых шариков

Тенденциозный подход Мидоу, опиравшегося на общий показатель 1 случай смерти от СВДС на 8543 случая живорождения, имел и другие слабые места. Отчет, из которого он выбрал этот показатель, предлагал и другую, гораздо более высокую общепопуляционную оценку риска – 1 к 1303 (этот показатель был рассчитан без разделения данных по социально-экономическим факторам). Мидоу решил не использовать эту альтернативную оценку. Вместо того, сделав особый акцент на условиях жизни семьи Кларк, Мидоу вывел значение, согласно которому вероятность даже одного случая СВДС выглядела гораздо ниже (а поскольку он безосновательно проигнорировал зависимость между серийными смертями от СВДС, повторная смерть от этого синдрома выглядела еще менее вероятной), пренебрегая теми факторами, которые делали его гораздо более вероятным. Так, он проигнорировал тот факт, что оба ребенка Салли были мальчиками и что СВДС у мальчиков развивается почти в два раза чаще, чем у девочек. Учет этого фактора подорвал бы позиции обвинения, показав более высокую вероятность серийной смерти от СВДС. В этом свете шанс, что Салли убила двух своих детей, представляется соразмерно ниже.

Хотя тенденциозный подбор стороной обвинения статистических данных сам по себе мог бы считаться неэтичным или даже заведомо ложным, подобная практика порождает куда более серьезную проблему. Классификация данных в докладе, на который опирался Мидоу, была проведена, чтобы выявить категории населения, наиболее подверженные высоким рискам и более эффективно использовать ограниченные ресурсы системы здравоохранения. Она никогда не предназначалась для того, чтобы делать выводы о риске развития СВДС в каждом конкретном случае – даже в этих группах повышенного риска. Доклад представлял собой самое общее исследование почти полумиллиона родов в Великобритании, а при таком исследовании индивидуальные обстоятельства каждых родов детально изучить невозможно (да и цели такой обычно не ставится). Дело же Салли Кларк, напротив, было чрезвычайно подробным расследованием конкретного случая. Обвинение выбрало только те аспекты биографии Салли и Стива, которые подходили под нарисованную в отчете картину, и, без учета других факторов, решило использовать эту конструкцию для определения степени риска развития СВДС у детей четы Кларк. Однако такой подход основан на ложном допущении о том, что индивидуальные характеристики тождественны характеристикам населения. Это классический пример так называемой экологической ошибки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Кит Йейтс читать все книги автора по порядку

Кит Йейтс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь отзывы


Отзывы читателей о книге Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь, автор: Кит Йейтс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x