Николай Глинка - Общая химия

Тут можно читать онлайн Николай Глинка - Общая химия - бесплатно ознакомительный отрывок. Жанр: sci-chem. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Общая химия
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.47/5. Голосов: 191
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Николай Глинка - Общая химия краткое содержание

Общая химия - описание и краткое содержание, автор Николай Глинка, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.

Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.

При изготовлении файла, использован сайт http://alnam.ru/book_chem.php

Общая химия - читать онлайн бесплатно ознакомительный отрывок

Общая химия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Николай Глинка
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В настоящее время в промышленности кислород получают из воздуха (см. § 123). В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода (см. стр. 337) или термическим разложением некоторых кислородсодержащих веществ, например перманганата калия:

Кислород бесцветный газ не имеющий запаха Он немного тяжелее воздуха масса - фото 593

Кислород — бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 л кислорода при нормальных условиях равна 1,43 г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100 объемов воды при 0°C растворяют 4,9, а при 20°C - 3,1 объема кислорода.

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью: стандартная энтальпия атомизации кислорода равна 498 кДж/моль. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500°C она становится заметной.

Как уже упоминалось (см. стр. 136), магнитные свойства кислорода указывают на наличие в молекуле O 2двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π-орбиталях (рис. 52 на стр. 142). Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов ой взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры.

- 364 -

Некоторые вещества, например оксид азота (II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением.

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты, как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горення в кислороде значительно выше, чем в воздухе.

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов — дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, — тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO 2, воду и азот), а последние вновь вступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затрудненном дыхании.

Смеси жидкого кислорода с угольным порошком, древесной мукой или другими горючими веществами называются оксиликвитами. Они обладают очень сильными взрывчатыми свойствами и применяются при подрывных работах.

125. Озон.

При пропускании электрических искр через кислород или воздух появляется характерный запах, причиной которого является образование нового вещества — озона. Озон можно получить из совершенно чистого сухого кислорода; отсюда следует, что он состоит только из кислорода и представляет собой его аллотропическое видоизменение.

Молекулярная масса озона равна 48. Атомная же масса кислорода равна 16; следовательно, молекула озона состоит из трех атомов кислорода.

Для получения озона пользуются действием тихих электрических разрядов на кислород. Приборы, служащие для этой цели, называются озонаторами.

Рис 110 Схема строения молекулы озона Рис 111 Схема орбиталей - фото 594

Рис. 110. Схема строения молекулы озона.

Рис 111 Схема орбиталей центрального атома кислорода в молекуле озона При - фото 595

Рис. 111. Схема орбиталей центрального атома кислорода в молекуле озона.

При обычных условиях озон — газ. От кислорода его можно отделить сильным охлаждением; озон конденсируется в синюю жидкость, кипящую при -111,9°C.

Растворимость озона в воде значительно больше, чем кислорода: 100 объемов воды при 0°C растворяют 49 объемов озона.

Образование озона из кислорода можно выразить уравнением

из которого следует что стандартная энтальпия образования озона положительна и - фото 596

из которого следует, что стандартная энтальпия образования озона положительна и равна 142,5 кДж/моль. Кроме того, как показывают коэффициенты уравнения, в ходе этой реакции из трех молекул газа получаются две молекулы, т. е. энтропия системы уменьшается. В итоге, стандартное изменение энергии Гиббса в рассматриваемой реакции также положительно (163 кДж/моль). Таким образом, реакция превращения кислорода в озон самопроизвольно протекать не может: для ее осуществления необходима затрата энергии. Обратная же реакция — распад озона — протекает самопроизвольно, так как в ходе этого процесса энергия Гиббса системы уменьшается. Иначе говоря, озон — неустойчивое вещество.

Молекула озона построена в форме равнобедренного треугольника. Ее структура схематически изображена на рис. 110. Близость угла при вершине треугольника к 120° указывает на то, что центральный атом кислорода находится здесь в состоянии sp 2-гибридизации. В соответствии с этим, с позиций метода ВС образование молекулы O 3можно описать следующим образом.

Гибридная sp 2-орбиталь центрального атома, содержащая один электрон (рис. 111, слева), перекрывается с p x-орбиталью одного из крайних атомов кислорода, в результате чего образуется σ-связь. Не участвующая в гибридизации p z-орбиталь центрального атома, ориентированная перпендикулярно к плоскости молекулы и также содержащая неспаренный электрон, перекрывается с аналогично расположенной p z-орбиталью того же крайнего атома кислорода, что приводит к образованию π-связи. Наконец, выступая в качестве донора электронной пары, занимающей одну из гибридных sp 2-орбиталей (рис. 111, справа), центральный атом кислорода образует по донорно-акцепторному способу σ-связь с другим крайним атомом кислорода.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Глинка читать все книги автора по порядку

Николай Глинка - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Общая химия отзывы


Отзывы читателей о книге Общая химия, автор: Николай Глинка. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x