Николай Глинка - Общая химия

Тут можно читать онлайн Николай Глинка - Общая химия - бесплатно ознакомительный отрывок. Жанр: sci-chem. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Общая химия
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.47/5. Голосов: 191
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Николай Глинка - Общая химия краткое содержание

Общая химия - описание и краткое содержание, автор Николай Глинка, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.

Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.

При изготовлении файла, использован сайт http://alnam.ru/book_chem.php

Общая химия - читать онлайн бесплатно ознакомительный отрывок

Общая химия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Николай Глинка
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Разница в энергиях уровней d γи d ε, называемая энергией расщепления, обозначается буквой Δ; ее можно экспериментально определить по спектрам поглощения комплексных соединений.

Рис 160 Схема энергетических уровней dорбиталей центрального иона а - фото 1038

Рис. 160. Схема энергетических уровней d-орбиталей центрального иона: а — свободный ион; б — ион в гипотетическом сферическом поле; в — ион в октаэдрическом поле лигандов.

- 577 -

Рис 161 Орбитали d z 2а и d x 2y 2б и d xyв в октаэдрическом поле - фото 1039

Рис. 161. Орбитали d z 2(а) и d x 2-y 2(б) и d xy(в) в октаэдрическом поле лигандоз (лиганды условно изображены в виде шариков).

Значение Δ зависит как от природы центрального атома, так и от природы лигандов: лиганды, создающие сильное поле, вызывают большее расщепление энергетических уровней, т. е. более высокое значение Δ.

По величине энергии расщепления лиганды располагаются в следующем порядке (так называемый спектрохимический ряд):

В начале этого ряда находятся лиганды создающие наиболее сильное поле в конце - фото 1040

В начале этого ряда находятся лиганды, создающие наиболее сильное поле, в конце — создающие слабое поле.

Электроны центрального иона распределяются по d-орбиталям так, чтобы образовалась система с минимальной энергией. Это может быть достигнуто двумя способами: размещением электронов на d ε-орбиталях, отвечающих более низкой энергии, или равномерным распределением их по всем d-орбиталям, в соответствии с правилом Хунда (см. § 32). Если общее число электронов, находящихся на d-орбиталях центрального иона, не превышает трех, то они размещаются на орбиталях более низкого энергетического уровня d εпо правилу Хунда. Так, у иона Cr 3+, имеющего электронную конфигурацию внешнего слоя 3d 3, каждый из трех d-электронов занимает одну из трех d ε-орбиталей.

Иное положение складывается, когда на d-орбиталях центрального иона находится большее число электронов. Размещение их в соответствии с правилом Хунда требует затраты энергии для перевода некоторых электронов на d γ-орбитали. С другой стороны, при размещении максимального числа электронов на d ε-орбиталях нарушается правило Хунда и, следовательно, необходима затрата энергии для перевода некоторых электронов на орбитали, на которых уже имеется по одному электрону.

- 578 -

Рис 162 распределение электронов иона Co 3по dорбиталям а в - фото 1041

Рис. 162. распределение электронов иона Co 3+по d-орбиталям: а — в гипотетическом сферическом поле; б — в слабом октаэдрическом поле лигандов (комплекс [CoF 6] 3-); в - в сильном октаэдрическом поле лигандов (комплекс [Co(CN) 6] 3-).

- 578 -

Поэтому в случае слабого поля, т. е. небольшой величины энергии расщепления, энергетически более выгодным оказывается равномерное распределение d-электронов по всем d-орбиталям (в соответствии с правилом Хунда); при этом центральный ион сохраняет высокое значение спина, так что образуется высокоспиновый парамагнитный комплекс. В случае же сильного поля (высокое значение энергии расщепления) энергетически более выгодным будет размещение максимального числа электронов на d ε-орбиталях; при этом создается низкоспиновый диамагнитный комплекс.

С этой точки зрения понятно, почему, например, комплекс [CoF 6] 3-парамагнитен, а комплекс [Co(CN) 6] 3-диамагнитен. Положение лигандов F- и CN- в спектрохимическом ряду (см. выше) показывает, что ионам CN- соответствует значительно более высокая энергия расщепления Δ, чем ионам F-. Поэтому в рассматриваемых комплексах электроны центрального иона Co 3+распределяются по d-орбиталям так, как это показано на рис. 162: комплекс [CoF 6] 3-— высокоспиновый, а комплекс [Co(CN) 6] 3-низкоспиновый.

Мы рассмотрели теорию кристаллического поля в приложении к комплексам с октаэдрическим расположением (октаэдрической координацией) лигандов. С аналогичных позиций могут быть рассмотрены и свойства комплексов с иной, например тетраэдрической, координацией.

На основе теории кристаллического поля удается объяснить не только магнитные свойства комплексных соединений, но и их специфическую окраску. Так, в комплексе [Ti(H 2O) 6] 3+имеет один Ti 3+-электрон (электронная конфигурация d 1). В нормальном (невозбужденном) состоянии этот электрон находится на одной из d ε-орбиталей, но при затрате некоторой энергии ( Δ = 238 кДж/моль ) может возбуждаться и переходить на d γ-орбиталь. Длина волны света, поглощаемого при этом переходе и соответствующего указанной энергии, равна 500 нм: это и обусловливает фиолетовую окраску комплекса [Ti(H 2O) 6] 3+. При таком рассмотрении становится понятным, почему комплексы, образованные ионами Cu +, Ag +, Zn 2+и Cd 2+, как правило, бесцветны; эти ионы имеют электронную конфигурацию d 10, так что все d-орбитали заполнены и переход электронов с d εна d γ-орбитали невозможен. Ион же Cu 2+образует окрашенные комплексы: он обладает электронной конфигурацией d 9, так что один из d ε-электронов может при возбуждении переходить на d γ-орбиталь.

- 579 -

Хотя теория кристаллического поля оказалась плодотворной с трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить положения лигандов в спектрохимическом ряду, а также сам факт образования некоторых комплексов, например, так называемых «сэндвичевых» соединений — дибензолхрома Cr(C 6H 6) 2, ферроцена CFe(C 5H 5) 2и их аналогов. Дело в том, что теория кристаллического поля, учитывая влияние лигандов на центральный ион, не принимает во внимание участия электронов лигандов в образовании химических связей с центральным ионом. Поэтому применение теории кристаллического поля ограничено, главным образом, комплексными соединениями с преимущественно ионным характером связи между центральным атомом и лигандами.

Метод валентных связей в приложении к комплексным соединениям базируется на тех же представлениях, что и в простых соединениях (см. §§ 39—44). При этом принимается во внимание, что химические связи, возникающие при комплексооб-разовании имеют донорно-акцепторное происхождение, т. е. образуются за счет неподеленной электронной пары одного из взаимодействующих атомов и свободной орбитали другого атома. Рассмотрим с этих позиций строение некоторых комплексных соединений.

В молекуле аммиака атом азота находится в состоянии sp 3-гибридизации, причем на одной из его гибридных орбиталей находится неподеленная электронная пара. Поэтому при донорно-акцепторном взаимодействии молекулы NH 3с ионом H+ образуется NH 4 +имеющий тетраэдрическую конфигурацию. Аналогично построен комплексный [BF] 4 -: здесь донором электронной пары служит анион F-, а акцептором — атом бора в молекуле BF 3, обладающий незанятой орбиталью внешнего электронного слоя и переходящий при комплексообразовании в состояние sp 3-гибридизации.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Глинка читать все книги автора по порядку

Николай Глинка - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Общая химия отзывы


Отзывы читателей о книге Общая химия, автор: Николай Глинка. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x