Александр Львовский - Отличная квантовая механика
- Название:Отличная квантовая механика
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9162-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Львовский - Отличная квантовая механика краткое содержание
В книге применяется математически простая физическая система — поляризация фотонов — в качестве инструмента визуализации, что позволяет студенту увидеть запутанную красоту квантового мира с самых первых страниц. Формальные концепции квантовой физики проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность.
Материал книги успешно использовался в качестве основного учебного пособия в двухсеместровом курсе по квантовой механике для студентов-физиков. Однако потенциальный круг читателей много шире и охватывает как студентов и аспирантов, изучающих точные науки, так и всех интересующихся квантовой физикой и квантовыми технологиями. Математический аппарат, требующийся для понимания книги, не выходит за пределы курса технического вуза или математической школы.
Автор — профессор Оксфордского университета, экспериментатор с мировым именем в области квантовой оптики и квантовой информатики — применяет сократовскую педагогику: студенту предлагается самостоятельно разработать аппарат квантовой физики путем последовательного решения тщательно составленных задач. Подробные решения представлены во втором томе пособия.
Отличная квантовая механика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Главы 3 и 4 представляют собой в некоторой степени реверанс в сторону «общепринятой» вузовской квантовой механики частицы в потенциальном поле. Там нам придется иметь дело с гильбертовым пространством, базисом которого является континуум, поэтому глава 3 сопровождается кратким курсом по дельта-функциям Дирака и преобразованию Фурье (приложение Г). Я надеюсь, что после того, как студенты уже усвоят базовые положения КМ, они смогут воспринимать технические особенности гильбертовых пространств с непрерывными переменными, не теряя из виду физические принципы. Вводя системы с непрерывными переменными я объясню, как и почему при этом изменяются правила нормирования. Затем я приведу обычные примеры потенциальных ям, потенциальных барьеров, туннелирования и гармонического осциллятора. На этом, как мне представляется, должна завершиться программа первого семестра курса.
Далее в главе 3 объясняется представление Гейзенберга и то, как оно согласуется с представлением Шрёдингера; все это иллюстрируется многочисленными примерами, связанными с физикой гармонического осциллятора (и продемонстрированными в квантово-оптических экспериментах): смещением, фазовым сдвигом, а также одно- и двумодовым сжатием. С помощью последнего я показываю первоначальный вариант парадокса Эйнштейна — Подольского — Розена.
В главе 4 я рассматриваю трехмерное геометрическое пространство (как тензорное произведение трех одномерных пространств) и рассказываю про момент импульса, спин и, наконец, атом водорода. Затем обсуждается поведение спина в магнитном поле и магнитный резонанс, а также дается понятие о спиновом эхе и спектроскопии Рамзея.
В главе 5 мы вновь обращаемся к фундаментальным принципам квантовой механики, представив их на этот раз на языке операторов плотности, который имеет важнейшее значение во всех приложениях квантовой физики. Чтобы продемонстрировать полезность этого языка, я даю с его помощью строгое описание декогеренции и релаксации при ядерном магнитном резонансе. Затем я затрагиваю важные для современной квантовой информатики темы: обобщенные измерения, а также томографию квантового состояния, процесса и детектора.
Как пользоваться этой книгой (послание студенту)
Бóльшую часть своей сознательной жизни я был вовлечен в процесс образования — сначала как школьник и студент, а затем как преподаватель и профессор. Этот опыт помог мне понять простую истину: почти невозможно изучить что бы то ни было, пассивно слушая лектора или читая книгу. Обучение требует активного участия студента. В случае теоретической физики это означает, что ты должен выводить формулы сам, а не наблюдать, как это проделывает кто-то другой на доске или в учебнике.
Помня об этом, я попытался написать этот текст, руководствуясь сократовским принципом: ученик приходит к истине, отвечая на вопросы учителя. Я лично познакомился с данным методом в старших классах. Мне повезло учиться в одной из лучших школ России с естественно-научным уклоном, где практиковался уникальный подход к обучению математике. Вместо объяснений нам давали листочки, состоявшие исключительно из определений, аксиом и задач. Справившись с задачами, мы обсуждали наше решение с преподавателем, который должен был убедиться, что мы верно поняли предложенный материал.
Эта книга устроена аналогичным образом. Вы наверняка заметите, что в ней необычно много упражнений. Некоторые из них представляют собой концептуальные теоремы; другие вставлены просто для практики; многие выступают в обеих ролях. Идея в том, что, выполнив их одно за другим, вы сами построите квантовую механику — с моей минимальной помощью. Соответственно, пропускать упражнения не рекомендуется. Пропуск упражнения равнозначен пропуску страницы-другой в традиционном учебнике: вы не сможете понять последующий материал.
Почти все упражнения имеют решения, которые приведены на сайте книги [2] Во втором томе русского издания. — Прим. ред.
. Однако прошу не заглядывать туда до тех пор, пока вы хотя бы не попытаетесь выполнить упражнение самостоятельно. Даже при условии, что вам не удастся самому получить результат, вы поймете, на каком этапе ваше решение застопорилось, — и тогда готовое решение поможет вам, дав ответ на заранее сформулированный вопрос. Таким образом, семя упадет на уже удобренную почву.
Однако, даже если у вас есть собственное решение, я рекомендую вам все же заглянуть в мое. Таким образом вы получите представление об ошибках, которые вы (или я), возможно, сделали, или, скажем, об альтернативном подходе к решению той же задачи.
Упражнения, которые я считаю более сложными, помечены звездочкой *. Здесь есть тонкость. Дело в том, что многие из них содержат утверждения, важные для изучения последующего материала. Поэтому, хотя допустимо отложить выполнение этих упражнений (или подробный разбор их решений) на потом, вам следует по крайней мере разобраться в утверждениях, которые в них содержатся.
Некоторые из упражнений (они помечены символом параграфа §) даны без решений. Как правило, это происходит в тех случаях, когда я считаю задачу относительно простой; тогда я обычно привожу ответ сразу после упражнения. Очень редко встречаются упражнения, помеченные и звездочкой, и символом параграфа. Такие «упражнения», по сути, представляют собой независимые исследовательские проекты, которыми вам, возможно, захочется заняться в свободное время.
Какими знаниями вам, по моему мнению, следует уже обладать, прежде чем открывать эту книгу?
• Я исхожу из того, что вы накомы с тригонометрией (знаете, например, как представить cos (α + β) или cos α cos β в виде суммы).
• Вы умеете работать с комплексными числами, имеете представление о понятиях сопряженности, комплексной фазы и комплексной экспоненты (к примеру, можете упростить |1 + e iϕ| 2).
• У вас есть общее представление о теории вероятностей. Здесь вам может помочь приложение Б, где содержатся некоторые основы этой области знания.
• То же относится к физике поляризации оптической волны: в приложении В кратко изложена необходимая информация, но его нельзя считать хорошей заменой соответствующего учебника.
• У вас есть навыки дифференциального исчисления и решения обыкновенных дифференциальных уравнений, которые необходимы при изучении всех частей книги, особенно главы 3 (квантовая физика систем с непрерывными переменными); это требование распространяется на анализ функций многих переменных (якобиан и т. п.) для главы 4. По дифференциальному исчислению нет специального приложения, но в приложении Г говорится о дельта-функции Дирака, а также о прямом и обратном преобразованиях Фурье, так что предварительные знания по математической физике не требуются.
Читать дальшеИнтервал:
Закладка: