LibKing » Книги » sci-phys » Александр Львовский - Отличная квантовая механика

Александр Львовский - Отличная квантовая механика

Тут можно читать онлайн Александр Львовский - Отличная квантовая механика - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Альпина нон-фикшн, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александр Львовский - Отличная квантовая механика
  • Название:
    Отличная квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2019
  • ISBN:
    978-5-0013-9162-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Александр Львовский - Отличная квантовая механика краткое содержание

Отличная квантовая механика - описание и краткое содержание, автор Александр Львовский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наряду с традиционным материалом, охватываемым курсом квантовой механики (состояния, операторы, уравнение Шрёдингера, атом водорода), в книге предлагается глубинное обсуждение таких концепций, как гильбертово пространство, квантовое измерение, запутанность и декогеренция. Эти концепции имеют решающее значение для понимания квантовой физики и ее связи с макроскопическим миром, но редко рассматриваются в учебниках начального уровня. В книге применяется математически простая физическая система — поляризация фотонов — в качестве инструмента визуализации, что позволяет студенту увидеть запутанную красоту квантового мира с самых первых страниц. Формальные концепции квантовой физики проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность. Материал книги успешно использовался в качестве основного учебного пособия в двухсеместровом курсе по квантовой механике для студентов-физиков. Однако потенциальный круг читателей много шире и охватывает как студентов и аспирантов, изучающих точные науки, так и всех интересующихся квантовой физикой и квантовыми технологиями. Математический аппарат, требующийся для понимания книги, не выходит за пределы курса технического вуза или математической школы. Автор — профессор Оксфордского университета, экспериментатор с мировым именем в области квантовой оптики и квантовой информатики — применяет сократовскую педагогику: студенту предлагается самостоятельно разработать аппарат квантовой физики путем последовательного решения тщательно составленных задач. Подробные решения представлены во втором томе пособия.

Отличная квантовая механика - читать онлайн бесплатно ознакомительный отрывок

Отличная квантовая механика - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Львовский
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Поскольку квантовая механика играет уже упомянутую роль общей основы, мы изучаем ее с известной степенью математической строгости. Я буду вводить определения и аксиомы, потом описывать явления, которые из них проистекают, а затем иллюстрировать эти явления примерами из разных областей физики, преимущественно из оптики.

Основной математический инструмент квантовой механики — линейная алгебра. В приложении A приводятся концепции этой дисциплины, важные для квантовой физики. Так что, если вы знакомы с линейной алгеброй и свободно себя в ней чувствуете, переходите сразу к следующему разделу. В противном случае я рекомендовал бы вам, прежде чем двигаться дальше, изучить первые четыре раздела приложения A.

1.2. Постулат гильбертова пространства

Я сначала сформулирую этот постулат [3] Общепринятых постулатов квантовой механики не существует. Если вы скажете «Это следует из второго закона Ньютона», вас поймут, но утверждения «Это следует из первого постулата квантовой механики» никто не поймет. Вместо этого следует сказать, к примеру, «Это следует из линейности квантового гильбертова пространства». , а затем объясню его смысл более подробно.

a) Возможные состояния физической системы образуют гильбертово пространство над полем комплексных чисел.

b) Несовместимые квантовые состояния соответствуют ортогональным векторам.

c) Все векторы, представляющие физические квантовые состояния, нормированы.

Данный постулат содержит два понятия, которые мы еще не определили: квантовое состояние и физическая система. Понятия эти настолько фундаментальны, что строгое определение им дать трудно [4] Как в геометрии, которая представляет собой чрезвычайно строгую науку, несмотря на то что первичные понятия в ней, такие как точка, прямая и плоскость, не определены. . Поэтому я проиллюстрирую их интуитивно, на примерах.

Физическая система — это объект или даже одна либо несколько степеней свободы объекта, которые можно изучать независимо от остальных степеней свободы и других объектов. Например, если наш объект — атом, то квантовая механика может изучать его движение как целого (одна физическая система), а может исследовать движение его электронов вокруг ядра (другая физическая система). Но если мы хотим изучать образование из двух атомов молекулы, то нам следует учитывать, что динамические состояния обоих атомов и электронов в них влияют друг на друга, поэтому мы должны рассматривать все эти степени свободы как единую физическую систему. Если же речь идет о самой молекуле, то квантовая механика может изучать движение ее центра масс (одна физическая система), вращательное движение (другая физическая система), колебания ее атомов (третья система) или квантовые состояния ее электронов (четвертая система) и т. д.

Чтобы разобраться в понятии состояния, рассмотрим следующую физическую систему: массивную частицу, которая может двигаться вдоль координатной оси x . С одной стороны, возможно определить ее квантовое состояние, сказав, что «координата частицы — в точности x = 5 м». Это допустимое определение; мы будем обозначать такое состояние как | x = 5 м⟩. Еще одно допустимое состояние можно обозначить как | x = 3 м⟩. Эти состояния ортогональны (⟨ x = 5 м| x = 3 м⟩ = 0), потому что «несовместимы»: если достоверно известно, что координата частицы равна 5 м, она не может быть обнаружена в состоянии x = 3 м. Еще один пример допустимого квантового состояния, в котором частица может находиться, — это «движется со скоростью 𝑣 = 4 м/с». Поскольку в таком состоянии импульс частицы известен точно, ее координата остается полностью неопределенной — т. е. данная частица может быть с некоторой вероятностью обнаружена в точке x = 5 м. Следовательно, скалярное произведение ⟨ x = 5 м| 𝑣 = 4 м/с⟩ не равно нулю; эти состояния не являются несовместимыми.

Данный постулат гласит также, что если | x = 5 м⟩ и | x = 3 м⟩ — допустимые квантовые состояния, то состояние где нормирующий множитель объяснение см в упр 11 также является - фото 4(где картинка 5— нормирующий множитель, объяснение см. в упр. 1.1) также является допустимым. Называется оно суперпозицией состояний. Для большей наглядности скажем, что если |кошка жива⟩ и |кошка мертва⟩ — допустимые состояния физической системы «кошка», то допустима и суперпозиция этих состояний [5] Это состояние иногда называют кошкой Шрёдингера в честь одного из отцов-основателей квантовой физики Эрвина Шрёдингера. На самом деле Шрёдингер говорил о более сложном объекте, см. отступление 2.5. .

Являются ли суперпозиции состояний математической абстракцией или они каким-то образом отражаются в физическом поведении системы? Верно, конечно же, второе. Как мы вскоре увидим, если подвергнуть, например, кошку в состояниях и просто случайную смесь состояний кошка жива и кошка мертва квантовому - фото 6 и просто случайную смесь состояний кошка жива и кошка мертва квантовому - фото 7и просто случайную смесь состояний |кошка жива⟩ и |кошка мертва⟩ квантовому измерению , то результаты мы будем наблюдать совершенно разные.

Напрашивается еще один вопрос. Мы не видим состояний суперпозиции в повседневной жизни — хотя они полностью совместимы с канонами квантовой механики. Почему? Как мы узнаем из следующей главы, дело в том, что суперпозиции макроскопически различных состояний чрезвычайно хрупки и быстро переходят в один из своих компонентов — в случае кошки Шрёдингера та быстро становится либо живой, либо мертвой. В микроскопическом мире, однако, состояния суперпозиции относительно устойчивы и нужны для физического описания системы. Необходимость иметь дело с объектами, само существование которых вступает в противоречие с нашим повседневным опытом, — одна из причин того, почему квантовая механика так сложна для понимания.

Упражнение 1.1.Чему равен нормирующий множитель 𝒩 состояния кошки Шрёдингера |ψ⟩ = 𝒩 [2|жива⟩ + i|мертва⟩], гарантирующий, что |ψ⟩ — физическая система?

Упражнение 1.2.Какова размерность гильбертова пространства, связанного с одной кинетической степенью свободы массивной частицы?

Подсказка:если вам кажется, что ответ очевиден, загляните в решение.

1.3. Поляризация фотона

Мы начнем изучение квантовой механики с одной из простейших физических систем: поляризации фотона [6] Если вы не знакомы с понятием поляризации электромагнитной волны, то теперь самое время прочесть первые два раздела приложения В. . Размерность гильбертова пространства этой системы равна всего лишь двум, но этого вполне достаточно, чтобы показать, насколько поразительным может быть мир квантовой механики.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Александр Львовский читать все книги автора по порядку

Александр Львовский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Отличная квантовая механика отзывы


Отзывы читателей о книге Отличная квантовая механика, автор: Александр Львовский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img