Александр Львовский - Отличная квантовая механика
- Название:Отличная квантовая механика
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9162-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Львовский - Отличная квантовая механика краткое содержание
В книге применяется математически простая физическая система — поляризация фотонов — в качестве инструмента визуализации, что позволяет студенту увидеть запутанную красоту квантового мира с самых первых страниц. Формальные концепции квантовой физики проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность.
Материал книги успешно использовался в качестве основного учебного пособия в двухсеместровом курсе по квантовой механике для студентов-физиков. Однако потенциальный круг читателей много шире и охватывает как студентов и аспирантов, изучающих точные науки, так и всех интересующихся квантовой физикой и квантовыми технологиями. Математический аппарат, требующийся для понимания книги, не выходит за пределы курса технического вуза или математической школы.
Автор — профессор Оксфордского университета, экспериментатор с мировым именем в области квантовой оптики и квантовой информатики — применяет сократовскую педагогику: студенту предлагается самостоятельно разработать аппарат квантовой физики путем последовательного решения тщательно составленных задач. Подробные решения представлены во втором томе пособия.
Отличная квантовая механика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Поскольку вдохновением для создания данного метода обучения во многом послужил мой собственный опыт в старшей школе, я всегда хотел опробовать его в той же обстановке. Мне это удалось в 2013 г., когда я взял академический отпуск в своем университете, чтобы помочь в создании Российского квантового центра в Москве. Я организовал кружок по квантовой физике для московских школьников. Вместе с командой преподавателей-энтузиастов во главе с Алексеем Федоровым мы еженедельно встречались с учащимися, чтобы выслушать, как они решили задачи из конспекта (решений мы им не давали), исправить их ошибки, объяснить тонкости и — что не менее важно — обсудить сам конспект. Отзывы, полученные в ходе этих дискуссий, сыграли важную роль в формировании настоящего текста, а несколько участников кружка, включая Алексея, теперь стали профессиональными учеными, занимающимися исследованиями квантовых технологий на постоянной основе.
Я хотел бы поблагодарить Стефана Лайла за тщательную вычитку книги и множество разумных замечаний.
Но самую свою горячую благодарность я выражаю своей жене Бхавии Равал. Сейчас, когда я пишу эти строки, она в пути — едет забирать нашу дочку Софи от дедушки. Это лишь одна из многих сотен ситуаций, в которых мне следовало бы, по идее, быть с семьей, а не прятаться за монитором, выводя на экране странные закорючки. Но теперь даже бесконечное терпение Бхавии, кажется, истощается. Вчера мы по ее совету посмотрели фильм «Париж подождет», в котором жена одного парня, который слишком много работает, позволяет соблазнить себя его коллеге-французу. Дорогая, намек понят. Париж больше не может ждать. И это последнее предложение, которое я добавляю в книгу!
Калгари, 10 декабря 2017 г.Учебное пособие

Глава 1. Квантовые постулаты
А дальше — стоп.
А дальше, извини, стена.
1.1. Предмет квантовой механики
Пожалуй, первое, что нужно понять о квантовой механике, — это то, что к механике она имеет такое же отношение, как, скажем, к электродинамике, оптике, физике конденсированного состояния или высоких энергий. Квантовая механика, по существу, не описывает какой-то конкретный класс физических явлений; скорее, она обеспечивает универсальную теоретическую основу , которую можно использовать во всех областях физики, — так операционная система компьютера обеспечивает базу, на которой могут исполняться другие приложения. Употребление термина «квантовая механика» сложилось исторически, поскольку впервые квантовую основу удалось успешно применить при исследовании механического движения электронов в атоме. Более удачными терминами были бы «квантовая физика» или «квантовая теория».
Так что предмет квантовой механики (квантовой физики) глобален: она охватывает все физические явления во Вселенной. Однако применять квантовый подход имеет смысл только в случае очень маленьких (микроскопических) физических систем. Поведение более крупных систем очень хорошо аппроксимируется законами классической физики, намного более простыми и интуитивно понятными, по крайней мере для существ, эволюция которых проходила именно на этом масштабе величин.
Проиллюстрируем это примером. Вы, вероятно, слышали о принципе неопределенности Гейзенберга: ∆p∆x ≳ ℏ /2 . То есть координату и импульс частицы невозможно измерить точно и одновременно: произведение неопределенностей составляет по крайней мере ℏ /2 ≈ 5 × 10 −35кг∙м 2/с. Чтобы макроскопический объект с массой порядка килограмма достиг предела неопределенности, потребовалось бы измерить и координату объекта с точностью порядка ~ 10 –17м и скорость с точностью ~ 10 –17м/с. Это, разумеется, нереально, так что для всех практических целей мы можем просто забыть о принципе неопределенности и рассматривать координату и импульс как точные величины. Но для электрона массой ~ 10 –30кг произведение неопределенностей координаты и скорости составит около 5 × 10 –5м 2/с, что вполне укладывается в экспериментально доступную точность измерений и должно приниматься во внимание.
Таким образом, предсказания квантовой теории отличаются от классических только для относительно простых, микроскопических объектов. Это объясняет, почему квантовая механика была открыта лишь в начале XX в. До того времени мы (сами представляющие собой макроскопические тела) имели дело исключительно с макроскопическими предметами. Но стоило нам изобрести инструменты, позволяющие достаточно глубоко проникать в микроскопический мир, как сразу же проявились квантовые явления.
Это пример принципа соответствия — философской максимы, согласно которой любая новая, более современная теория должна воспроизводить результаты более старых, устоявшихся теорий в тех областях, где эти теории были проверены. Вот еще один пример для иллюстрации этого принципа. Пока мы имели дело только с объектами, движущимися намного медленнее света, для описания окружающего нас мира достаточно было ньютоновой механики. Но стоило нам получить возможность наблюдать тела, которые движутся быстро (например, Земля вокруг Солнца в эксперименте Майкельсона — Морли), мы начали замечать несоответствия и вынуждены были разработать теорию относительности. Эта теория заметно отличается от ньютоновой механики — но тем не менее согласуется с ней в предельном случае низких скоростей. Было бы неразумно использовать специальную теорию относительности для описания, например, трансмиссии трактора, потому что классическое приближение в данном случае и вполне достаточное, и многократно более простое в применении. Аналогичным образом использование квантовой физики для описания макроскопических явлений в большинстве случаев было бы переусложненным и ненужным.
В классической физике мы имеем дело с величинами : скоростью полета камня 10 м/с, силой протекающего по электрическому контуру тока 0,2 А и т. д. Даже если мы не знаем точного значения какой-то физической величины, мы можем работать над улучшением нашей теории и эксперимента, чтобы предсказать и измерить эту величину со все более высокой точностью. Иными словами, классический мир бесконечно познаваем . В квантовой физике ситуация иная: некоторые знания (например, одновременные значения координаты и импульса) могут быть «священными»: их в принципе невозможно получить. И эту ситуацию уже нельзя описывать в терминах одних только величин. Вместо этого мы должны использовать концепцию квантового состояния физической системы. Как мы увидим, эта концепция содержит в себе границу между знанием, которое можно получить, и знанием, которое получить невозможно. Мы можем узнать точно, в каком состоянии находится система, но каждое состояние связано с фундаментальными ограничениями на точность, с которой физические величины могут быть определены.
Читать дальшеИнтервал:
Закладка: