Александр Львовский - Отличная квантовая механика

Тут можно читать онлайн Александр Львовский - Отличная квантовая механика - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Альпина нон-фикшн, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Отличная квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-0013-9162-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Львовский - Отличная квантовая механика краткое содержание

Отличная квантовая механика - описание и краткое содержание, автор Александр Львовский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наряду с традиционным материалом, охватываемым курсом квантовой механики (состояния, операторы, уравнение Шрёдингера, атом водорода), в книге предлагается глубинное обсуждение таких концепций, как гильбертово пространство, квантовое измерение, запутанность и декогеренция. Эти концепции имеют решающее значение для понимания квантовой физики и ее связи с макроскопическим миром, но редко рассматриваются в учебниках начального уровня.
В книге применяется математически простая физическая система — поляризация фотонов — в качестве инструмента визуализации, что позволяет студенту увидеть запутанную красоту квантового мира с самых первых страниц. Формальные концепции квантовой физики проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность.
Материал книги успешно использовался в качестве основного учебного пособия в двухсеместровом курсе по квантовой механике для студентов-физиков. Однако потенциальный круг читателей много шире и охватывает как студентов и аспирантов, изучающих точные науки, так и всех интересующихся квантовой физикой и квантовыми технологиями. Математический аппарат, требующийся для понимания книги, не выходит за пределы курса технического вуза или математической школы.
Автор — профессор Оксфордского университета, экспериментатор с мировым именем в области квантовой оптики и квантовой информатики — применяет сократовскую педагогику: студенту предлагается самостоятельно разработать аппарат квантовой физики путем последовательного решения тщательно составленных задач. Подробные решения представлены во втором томе пособия.

Отличная квантовая механика - читать онлайн бесплатно ознакомительный отрывок

Отличная квантовая механика - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Львовский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

129

Конечно, если квантовый процесс описывается оператором, тот должен быть не просто линейным, но также унитарным (см. разд. 1.10). Однако для данного упражнения этот факт не существенен.

130

На самом деле достаточно, чтобы набор картинка 3055был остовным; ему не обязательно быть линейно независимым.

131

При nm это всего лишь формальные математические объекты, которые не соответствуют никаким физическим состояниям. Однако они удобны для тренировки интуиции.

132

Поле — это понятие из алгебры, обозначающее полное множество некоторых чисел. Примерами полей могут служить множества рациональных (ℚ), действительных (ℝ) и комплексных (ℂ) чисел. Квантовая механика обычно имеет дело с векторными пространствами над полем комплексных чисел.

133

Обратите внимание: в качестве альтернативной нотации для |zero⟩ мы иногда используем просто 0, но никогда не |0⟩.

134

То есть такая, в которой по крайней мере один из коэффициентов не равен нулю.

135

Мы используем символ ≃ вместо =, когда выражаем векторы и операторы в матричной форме, как в (A.2). Делается это для того, чтобы подчеркнуть разницу: левая часть (вектор) представляет собой абстрактный объект и не зависит от базиса, тогда как правая часть — это набор чисел, зависящий от выбора базиса {|𝑣i⟩}. Однако в литературе, как правило, для простоты используется знак равенства.

136

Отображение — это функция, которая устанавливает для каждого элемента | a ⟩ в 𝕍 уникальный «образ» Â | a ⟩.

137

ℂ 2есть линейное пространство столбцов картинка 3056содержащих по два комплексных числа.

138

Это упрощенный вид формулы Бейкера — Хаусдорфа — Кэмпбелла. Полный вид этой формулы более сложен и выполняется в том числе для случая, когда картинка 3057не коммутирует с картинка 3058

139

На протяжении всей книги я использую нижние индексы для обозначения дискретных вероятностей, таких как pri или картинка 3059и скобки для обозначения непрерывных плотностей вероятности, к примеру pr( Q ).

140

Строгая формулировка этого утверждения называется центральной предельной теоремой.

141

Определение того, какая из круговых поляризационных схем должна называться «левой», а какая «правой», — вопрос соглашения. Здесь мы следуем соглашению, принятому в квантовой оптике. В право-циркулярной схеме конец вектора электрического поля вращается по часовой стрелке, если смотреть «сзади» относительно волны (от источника). Однако вращение происходит против часовой стрелки, если смотреть «спереди», или в плоскости x-y с традиционной ориентацией осей. В пространстве эта траектория имеет вид левого винта.

142

Гладкой называется функция, имеющая производные всех конечных порядков.

143

Не существует общепринятой договоренности ни о том, где ставить минус в показателе комплексной экспоненты — в уравнении (Г.10) или (Г.21), ни о том, как распределить между ними множитель 1/2π. Для этой книги я выбрал договоренность по своему собственному вкусу.

144

Реальная скорость передачи секретного ключа несколько ниже из-за «наценки», связанной с усилением секретности.

145

Здесь мы пренебрегаем относительным сдвигом фазы, который PBS налагает на пары вертикальных и горизонтальных фотонов.

146

Строго говоря, решение для φ не определено, если либо ψ↑, либо ψ↓ обнуляется. Тем не менее эти случаи соответствуют уникальным блоховским векторам, указывающим на северный и южный полюса блоховской сферы соответственно.

147

В этих рассуждениях мы пренебрегаем соглашением о том, что полярный угол θ должен находиться в интервале от 0 до π. Если мы хотим учитывать это соглашение, нам следует переопределить полярные углы следующим образом. Обозначим θ′ = 4α mod π. Тогда При 0 θ π это состояние соответствует блоховскому вектору с θ θ φ 0 - фото 3060При 0 ≤ θ′ ≤ π это состояние соответствует блоховскому вектору с θ = θ′, φ = 0. При π < θ′ < 2π мы можем записать что соответствует блоховскому вектору с θ 2π θ φ π В обоих случаях θ - фото 3061что соответствует блоховскому вектору с θ = 2π — θ′, φ = π. В обоих случаях θ ∈ [0, π].

Этот более строгий подход дает нам то же самое геометрическое место на сфере Блоха, что и приведенный выше упрощенный.

148

Это соответствует географической широте π/2 — θ.

149

Обратите внимание на знак: фиктивное поле картинка 3062направлено вдоль отрицательной оси z при положительном Δ. Это означает, что при положительном Δ полярный угол вектора Блоха увеличивается со временем. Все происходит наоборот по отношению к упр. 4.62, a), где поле направлено вдоль положительного направления оси z, а полярный угол вектора Блоха со временем уменьшается.

150

Конечно, эти векторы представляют собой просто наборы чисел, а не квантовые состояния.

151

Логарифм и квадратный корень — примеры многозначных функций, весьма распространенных в комплексном анализе.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Львовский читать все книги автора по порядку

Александр Львовский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Отличная квантовая механика отзывы


Отзывы читателей о книге Отличная квантовая механика, автор: Александр Львовский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x