Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Групповая скорость равна производной ω по k, а фазовая скорость равна отношению ω/k.

Посмотрим, можно ли понять, почему так происходит. Рассмотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то различаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, распространяющиеся с немного различными скоростями. Но поскольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предположим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действительности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени происходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, которая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с которой передаются модулирующие сигналы.

Если мы посылаем сигнал, т. е. производим какие-то изменения волны, которые могут быть услышаны и расшифрованы кем-то, то это является своего рода модуляцией, но такая модуляция при условии, что она относительно медленная, будет распространяться с групповой скоростью (быстрые модуляции значительно труднее анализировать).

Теперь мы можем показать (наконец-то!), что скорость распространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение d ω/ dk , которое мы вычислим дифференцированием формулы (48.14): dk / d ω=1/ c + a /(ω 2 c ). А групповая скорость равна обратной величине, т. е.

4818 что меньше чем с Таким образом хотя фазы могут бежать быстрее - фото 1279(48.18)

что меньше, чем с! Таким образом, хотя фазы могут бежать быстрее скорости света, модулирующие сигналы движутся медленнее, и в этом состоит разрешение кажущегося парадокса! Разумеется, в простейшем случае ω=kc групповая скорость d ω/ dk тоже равна с , т. е. когда все фазы движутся с одинаковой скоростью, естественно, и групповая скорость будет той же самой.

§ 5. Амплитуда вероятности частиц

Рассмотрим еще один необычайно интересный пример фазовой скорости. Он относится к области квантовой механики. Известно, что амплитуда вероятности найти частицу в данном месте изменяется при некоторых обстоятельствах в пространстве и времени (давайте возьмем одно измерение) следующим образом:

4819 где ω частота связанная с классической энергией E ℏ ω а k - фото 1280(48.19)

где ω — частота, связанная с классической энергией, E = ω, а k — волновое число, которое связано с импульсом соотношением р=ℏk. Мы говорим, что частица имеет определенный импульс р , если волновое число в точности равно k , т. е. если бежит идеальная волна повсюду с одинаковой амплитудой. Выражение (48.19) дает амплитуду вероятности, но если мы возьмем квадрат абсолютной величины, то получим относительную вероятность обнаружения частицы как функцию положения и времени. В данном случае она равна постоянной , что означает вероятность обнаружить частицу в любом месте. Рассмотрим теперь такой случай, когда известно, что обнаружить частицу в каком-то месте более вероятно, чем в других местах. Подобную картину мы описываем волной, которая имеет максимум в данном месте и сходит на нет по мере удаления в стороны (фиг. 48.6).

Фиг 486 Локализованный волновой пакет Это не то же самое что - фото 1281

Фиг. 48.6. Локализованный волновой пакет,

(Это не то же самое, что изображено на фиг. 48.1, где волна имеет целый ряд максимумов, но сними вполне можно расправиться, сложив несколько волн с приблизительно одинаковыми значениями ω и k . Таким способом можно избавиться от всех максимумов, кроме одного.)

При этих обстоятельствах, поскольку квадрат выражения (48.19) представляет вероятность найти частицу в некотором месте, мы знаем, что в данный момент больше шансов найти частицу вблизи центра «колокола», где амплитуда максимальна. Если подождать немного, то волна передвинется, и по прошествии некоторого промежутка времени «колокол» перейдет в какое-то другое место. Зная, что частица вначале где-то была расположена, мы ожидали бы, согласно классической механике, что она будет где-то и позднее, ведь есть же у нее скорость и импульс в конце концов. При этом квантовая теория дает в пределе правильные классические соотношения между энергией, импульсом и скоростью, если только групповая скорость, скорость модуляции, будет равна скорости классической частицы с тем же самым импульсом.

Сейчас необходимо показать, так ли это на самом деле или нет. Согласно классической теории, энергия связана со скоростью уравнением

4820 Точно таким же образом импульс равен 4821 Как следствие - фото 1282(48.20)

Точно таким же образом импульс равен

4821 Как следствие отсюда после исключения v получается т е р μ р - фото 1283(48.21)

Как следствие отсюда после исключения v получается

т е р μ р μ m 2 Это величайший результат четырехмерья о котором мы уже - фото 1284

т. е. р μ р μ= m 2. Это величайший результат четырехмерья, о котором мы уже говорили много раз, устанавливающий связь между энергией и импульсом в классической теории. Теперь же, поскольку мы собираемся заменить E и p на ω и k помощью подстановки Е = ω и p =ℏ k , он означает, что в квантовой механике должна существовать связь

4822 Таким образом возникло соотношение между частотой и волновым числом - фото 1285(48.22)

Таким образом, возникло соотношение между частотой и волновым числом квантовомеханической амплитуды, описывающей частицу с массой m . Из этого уравнения можно получить

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x