Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

483 После сложения этих двух уравнений произведение синусов сократится и - фото 1260(48.3)

После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

484 Теперь можно обернуть это выражение и получить формулу для cosαcosβ - фото 1261(48.4)

Теперь можно обернуть это выражение и получить формулу для cosα+cosβ, если просто положить α=а+b, a β=а- b , т. е. a= 1/ 2(α+β), a b= 1/ 2(α-β):

485 Но вернемся к нашей проблеме Сумма cosω 1t и cosω 2t равна 486 - фото 1262(48.5)

Но вернемся к нашей проблеме. Сумма cosω 1t и cosω 2t равна

486 Пусть теперь частоты приблизительно одинаковы так что 1 2ω 1ω 2 - фото 1263(48.6)

Пусть теперь частоты приблизительно одинаковы, так что 1/ 2(ω 1+ω 2) равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность ω 1-ω 2 гораздо меньше , чем ω 1и ω 2, поскольку мы предположили, что ω 1и ω 2приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной первоначальным, но что «размах» ее медленно меняется: он пульсирует с частотой, равной 1/ 2(ω 1-ω 2). Но та ли это частота, с которой мы слышим биения? Уравнение (48.6) говорит, что амплитуда ведет себя как cos 1/ 2(ω 1-ω 2), и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой 1/ 2(ω 1-ω 2), однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза большую. Иначе говоря, модуляция амплитуды в смысле ее интенсивности происходит с частотой ω 1-ω 2, хотя мы и умножаем на косинус половинной частоты.

Пренебрегая этими небольшими усложнениями, мы можем заключить, что если складывать две волны с частотами ω 1и ω 2, то получим волну с частотой, равной средней частоте 1/ 2(ω 1+ω 2), «сила» которой осциллирует с частотой ω 1-ω 2.

Если амплитуды двух волн различны, то можно, конечно, повторить все вычисления снова, умножив предварительно косинусы на различные амплитуды АА 2и произведя массу всяких математических вычислений, перестроек и т. п. с использованием уравнений, подобных (48.2) — (48.5). Однако есть и другой, более легкий путь провести этот же анализ. Известно, например, что гораздо легче работать с экспонентами, чем с синусами и косинусами, поэтому можно представить A 1cosω 1t как реальную часть экспоненты А 1 ехр ( i ω 1 t ). Подобным же образом вторая волна будет реальной частью A 2ехр(iω 2t). После сложения этих экспонент A 1exp( i ω 1 t )+A 2exp(iω 2t) и выделения в качестве множителя экспоненты со средней частотой мы получим

487 т е снова оказывается что высокочастотная волна модулируется малой - фото 1264(48.7)

т. е. снова оказывается, что высокочастотная волна модулируется малой частотой.

§ 2. Некоторые замечания о биениях и модуляции

Предположим теперь, что нас интересует интенсивность волны, описываемой уравнением (48.7). Чтобы найти ее, нужно взять квадрат абсолютной величины либо правой, либо левой части этого уравнения. Давайте возьмем левую часть. Интенсивность при этом будет равна

488 Видите интенсивность возрастает и падает с частотой ω 1ω 2 - фото 1265(48.8)

Видите, интенсивность возрастает и падает с частотой ω 1-ω 2, изменяясь в пределах между ( А 1+ A 2) 2и ( А 1- A 2) 2. Если А 1≠ А 2, то минимальная интенсивность не равна нулю.

Те же результаты можно получить и другим путем—с помощью схем, подобных фиг. 48.2.

Фиг 482 Результат сложения двух комплексных векторов с равными частотами - фото 1266

Фиг. 48.2. Результат сложения двух комплексных векторов с равными частотами.

Изобразим одну из волн в виде вектора длиной A 1в комплексной плоскости, вращающегося с угловой скоростью ω 1. Вторую волну изобразим другим вектором, длина которого A 2, а угловая скорость вращения ω 2. Если эти частоты в точности равны между собой, то мы получим вращающийся вектор, длина которого все время постоянна. Так что интенсивность в этом случае будет все время постоянной фиксированной величиной. Если, однако, частоты хоть немного отличаются одна от другой, то эти два вектора будут крутиться с различными скоростями.

На фиг. 48.3 показано, как выглядит вся картина «с точки зрения» вектора A 1exp(iω 1t).

Фиг 483 Результат сложения двух комплексных векторов с различными частотами - фото 1267

Фиг. 48.3. Результат сложения двух комплексных векторов с различными частотами во вращающейся системе отсчета первого вектора. Показаны девять последовательных положений медленно вращающегося вектора.

Мы видим, что вектор А 2медленно «отворачивается» от вектора А 1, так что амплитуда, получаемая при сложении этих векторов, сначала велика, а затем, когда второй вектор совсем «отвернется» в другую сторону, т. е. когда угол между ними станет 180°, она будет особенно мала, и т. д. Вектор крутится, амплитуда суммы векторов становится то больше, то меньше, а интенсивность пульсирует. Идея сравнительно простая, и ее можно реализовать множеством различных способов. Этот эффект очень легко наблюдать экспериментально. Можно установить, например, два громкоговорителя, каждый из которых связан со своим генератором колебаний и может давать свой собственный тон. Таким образом, мы принимаем один сигнал от первого источника, а другой сигнал от второго. Если частоты этих сигналов в точности одинаковы, то в результате в каждой точке пространства получится эффект определенной силы. Но если генераторы немного расстроить, то мы услышим некоторые изменения интенсивности. Чем больше мы расстраиваем генераторы, тем более быстрыми будут изменения силы звука. Однако уху становится трудно уследить за изменениями, скорость которых превышает 10 колебаний в секунду или что-то около этого.

Тот же эффект можно наблюдать и на осциллографе, который просто показывает сумму токов двух генераторов. Если частота пульсаций сравнительно мала, то мы просто видим, как на экране перед нами проходят синусоидальные волны, амплитуда которых пульсирует, но если сделать пульсации более быстрыми, то мы увидим нечто похожее на то, что показано на фиг. 48.1. По мере увеличения разницы между частотами «вершины» сближаются все больше и больше. Если амплитуды не равны друг другу, если мы один сигнал сделаем слабее другого, то образуется волна, амплитуда которой, как это и ожидается, никогда не становится равной нулю. Все получается так, как нужно, независимо от того, электричество это или звук.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x