Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Даже если v — скорость спутника (около 8 км / сек ), то и при этих условиях v / c =3/10 5; подстановка этой величины в формулу показывает, что поправка к массе составит не более одной двухмиллиардной части самой массы, что, пожалуй, заметить невозможно. На самом деле, правильность формулы подтверждена наблюдением движения разнообразных частиц, скорость которых практически вплотную подходила к скорости света. В обычных условиях рост массы незаметен; тем замечательней, что он сперва был обнаружен теоретически, а уж после открыт на опыте. Хотя для достаточно больших скоростей рост может быть как угодно велик, открыт он был не таким путем. Закон этот в момент своего открытия означал лишь едва заметное изменение в некоторых цифрах. Тем интереснее разобраться, как сочетание физического размышления и физического эксперимента вызвало его к жизни. Вклад в это дело внесло немалое число людей, но конечным итогом их деятельности явилось открытие Эйнштейна.

У Эйнштейна, собственно говоря, есть две теории относительности. Мы будем здесь говорить только о специальной теории относительности , ведущей свое начало с 1905 г. В 1915 г. Эйнштейн выдвинул еще одну теорию, называемую общей теорией относительности . Она обобщает специальную теорию на случай тяготения; мы не будем ее здесь обсуждать.

Принцип относительности впервые высказал Ньютон в одном из следствий из Законов Движения: «Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения». Это означает, к примеру, что при свободном полете межпланетного корабля с постоянной скоростью все опыты, поставленные на этом корабле, все явления, наблюдаемые на нем, будут таковы, как будто он покоится (конечно, при условии, что наружу из корабля выходить не будут). В этом смысл принципа относительности. Мысль эта — довольно проста; вопрос только в том, верно ли , что во всех опытах, производимых внутри движущейся системы, законы физики выглядят такими же, какими они были бы, если бы система стояла на одном месте. Давайте же сначала посмотрим, так ли выглядят законы Ньютона в движущейся системе. Для этого нам снова понадобится помощь наших молодых людей — Мика и Джо.

Пускай Мик отправился вдоль по оси х с постоянной скоростью u и измеряет свое положение в какой-то точке, показанной на фиг. 15.1.

Фиг 151 Две системы координат находящиеся в равномерном относительном - фото 347

Фиг. 15.1. Две системы координат, находящиеся в равномерном относительном движении вдоль оси х.

Он обозначает « x -расстояние» точки в своей системе координат как х '. Джо стоит на месте и измеряет положение той же точки, обозначая ее x -координату в своей системе через х . Связь между координатами в двух системах ясна из рисунка. За время t начало системы Мика сдвинулось на ut , и если обе системы вначале совпадали, то

152 Если подставить эти преобразования координат в законы Ньютона то - фото 348(15.2)

Если подставить эти преобразования координат в законы Ньютона, то законы эти превращаются в такие же законы, но в штрихованной системе; это значит, что законы Ньютона имеют одинаковый вид в движущейся и в неподвижной системах; потому-то, проделав любые опыты по механике, и нельзя сказать, движется система или нет.

Принцип относительности применялся в механике уже издавна. Многие, в частности Гюйгенс, пользовались им для вывода законов столкновения биллиардных шаров почти так же, как мы в гл. 10 доказывали сохранение импульса.

В прошлом столетии в результате исследования явлений электричества, магнетизма и света интерес к принципу относительности возрос. Максвелл подытожил в своих уравнениях электромагнитного поля многие тщательные исследования этих явлений. Его уравнения сводят воедино электричество, магнетизм, свет. Однако уравнения Максвелла, по-видимому, не подчиняются принципу относительности: если преобразовать их подстановкой (15.2), то их вид не останется прежним . Значит, в движущемся межпланетном корабле оптические и электрические явления не такие, как в неподвижном; их можно использовать для определения его скорости, в частности определить и абсолютную скорость корабля, сделав подходящие электрические или оптические измерения. Одно из следствий уравнений Максвелла заключается в том, что если возмущение поля порождает свет, то эти электромагнитные волны распространяются во все стороны одинаково и с одинаковой скоростью с=300 000 км / сек . Другое следствие уравнений: если источник возмущения движется, то испускаемый свет все равно мчится сквозь пространство со скоростью с . Так же бывает и со звуком: скорость звуковых волн тоже не зависит от движения источника.

Эта независимость от движения источника света ставит интересный вопрос. Положим, что мы едем в автомашине со скоростью и , а свет от задних фар распространяется со скоростью с . Дифференцируя первую строчку в (15.2), получаем

Это означает что в согласии с преобразованиями Галилея видимая скорость - фото 349

Это означает, что, в согласии с преобразованиями Галилея, видимая скорость света по измерениям, проведенным из автомашины, будет не с , а сu . Например, скорость автомашины 100 000 км / сек , а скорость света 300 000 км / сек , тогда свет от фар будет удаляться с быстротой 200 000 км / сек . Во всяком случае, измерив скорость света, испускаемого фарами (если только справедливы преобразования Галилея для света), можно узнать скорость автомашины. На этой идее основывалось множество опытов по определению скорости Земли, но ни один из них не удался: никакой скорости обнаружено не было. Вы скоро познакомитесь очень подробно с одним из таких опытов. Вы разберетесь, что в нем случилось и в чем было дело. Что-то неладное творилось в ту пору с уравнениями физики. Но что именно?

§ 2. Преобразование Лоренца

Когда стало ясно, что с уравнениями физики не все ладится, первым долгом подозрение пало на уравнения электродинамики Максвелла. Они только-только были написаны, им было всего 20 лет от роду; казалось почти естественным, что они неверны. Их принялись переписывать, видоизменять и подгонять к тому, чтобы оказался выполненным принцип относительности в галилеевой форме (15.2). При этом в уравнениях электродинамики появились новые члены; они предсказывали новые электрические явления, но эксперимент никаких таких явлений не обнаружил, и пришлось отказаться от попыток изменить уравнения Максвелла. Постепенно всем становилось ясно, что максвелловы законы электродинамики абсолютно правильны, а загвоздка в чем-то другом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x