Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Заметьте теперь, что эллипсоид имеет очень интересное свойство — его всегда можно описать простым заданием направления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наименьшего и наибольшего диаметра и направление, перпендикулярное к ним. На фиг. 31.3 они обозначены буквами а, b и с .

Фиг 313 Эллипсоид анергии для тензора поляризуемости По отношению к этим - фото 1741

Фиг. 31.3. Эллипсоид анергии для тензора поляризуемости.

По отношению к этим осям уравнение эллипсоида имеет особенно простую форму:

Итак по отношению к главным осям у тензора поляризуемости останутся только три - фото 1742

Итак, по отношению к главным осям у тензора поляризуемости останутся только три ненулевые компоненты α аа , α bb и α сс . Другими словами, сколь бы ни был сложен кристалл, всегда можно выбрать оси так (они не обязательно будут осями самого кристалла), что у тензора поляризуемости останется только три компоненты. Уравнение (31.4) для таких осей становится особенно простым:

319 Иначе говоря электрическое поле направленное по любой одной из - фото 1743(31.9)

Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.

Тензор часто записывается в виде таблицы из девяти коэффициентов, взятых в скобки:

3110 Для главных же осей а b и с в таблице остаются только диагональные - фото 1744(31.10)

Для главных же осей а, b и с в таблице остаются только диагональные члены, поэтому мы говорим, что тензор становится «диагональным», т. е.

3111 Самое важное здесь то что к такой форме подходящим выбором осей - фото 1745(31.11)

Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически любой симметричный тензор второго ранга какого угодно числа измерений).

Если все три элемента тензора поляризуемости в диагональной форме равны друг другу, т. е. если

3112 то эллипсоид энергии превращается в сферу поляризуемость во всех - фото 1746(31.12)

то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изотропным. В тензорных обозначениях

Том 2 Электромагнетизм и материя - изображение 1747(31.13)

где δ ij— единичный тензор :

3114 что разумеется означает 3115 Тензор δ ijчасто называют - фото 1748(31.14)

что, разумеется, означает

3115 Тензор δ ijчасто называют также символом Кронекера Для забавы вы - фото 1749(31.15)

Тензор δ ijчасто называют также «символом Кронекера». Для забавы вы можете доказать, что тензор (31.14) после замены одной прямоугольной системы координат на другую будет иметь в точности ту же самую форму. Тензор поляризуемости типа (31.13) дает

Том 2 Электромагнетизм и материя - изображение 1750

т. е. получается наш старый результат для изотропного диэлектрика:

Том 2 Электромагнетизм и материя - изображение 1751

Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрии и что для многих целей их удобно разбить на 7 классов в соответствии с формой элементарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симметричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° относительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен переходить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно.

Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллипсоид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для кубического кристалла равными должны быть все три диаметра эллипсоида — он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях.

Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симметрии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемости увидеть, какова должна быть эта связь, относительно легко.

§ 4. Другие тензоры; тензор инерции

В физике есть еще немало других примеров тензоров. В металле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока jприблизительно пропорциональна электрическому полю Е, причем константа пропорциональности называется проводимостью σ :

Том 2 Электромагнетизм и материя - изображение 1752

Однако для кристалла соотношение между jи Еболее сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем

Другим примером физического тензора является момент инерции В гл 18 вып 2 - фото 1753

Другим примером физического тензора является момент инерции. В гл. 18 (вып. 2) мы видели, что момент количества движения Lтвердого тела, вращающегося относительно фиксированной оси, пропорционален угловой скорости ω, и коэффициент пропорциональности I мы назвали моментом инерции:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x