Ричард Фейнман - Том 2. Электромагнетизм и материя
- Название:Том 2. Электромагнетизм и материя
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание
Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(13.25)
или
(13.26)
Теперь мы можем понять, почему в системе S ' возникают электрические поля: потому что в этой системе в проволоке имеется результирующая плотность зарядов ρ', даваемая формулой
С помощью (13.24) и (13.26) имеем
Поскольку покоящаяся проволока нейтральна, ρ -=-ρ +, получаем
(13.27)
Наша движущаяся проволока заряжена положительно и должна создавать поле Е ' в точке, где находится внешняя покоящаяся частица. Мы уже решали электростатическую задачу об однородно заряженном цилиндре. Электрическое поле на расстоянии r от оси цилиндра есть
(13.28)
Сила, действующая на отрицательно заряженную частицу, направлена к проволоке. Мы имеем силу, направленную одинаково в обеих системах; электрическая сила в системе S ' направлена так же, как магнитная сила в системе S . Величина силы в системе S' равна
(13.29)
Сравнивая этот результат для F ' с нашим результатом для F в уравнении (13.21), мы видим, что величины сил с точки зрения двух наблюдателей почти одинаковы. Точнее,
(13.30)
поэтому для малых скоростей, которые мы рассматриваем, обе силы одинаковы. Мы можем сказать, что по меньшей мере для малых скоростей магнетизм и электричество суть просто «две разные стороны одной и той же вещи».
Но оказывается, что все обстоит даже еще лучше, чем мы сказали. Если принять во внимание тот факт, что силы также преобразуются при переходе от одной системы к другой, то окажется, что оба способа наблюдения за происходящим дают на самом деле одинаковые физические результаты при любой скорости.
Чтобы это увидеть, можно, например, задать вопрос: какой поперечный импульс приобретет частица, на которую в течение некоторого времени действовала сила? Мы знаем из вып. 2, гл. 16, что поперечный импульс частицы должен быть один и тот же как в системе S , так ив системе S'. Обозначим поперечную координату у и сравним Δ р y и Δ р ' y . Используя релятивистски правильное уравнение движения F= dp / dt , мы ожидаем, что за время Δ t наша частица приобретет поперечный импульс Δ р y в системе S , даваемый выражением
(13.31)
В системе S' поперечный импульс будет равен
(13.32)
Мы должны сравнивать Δр yи Δр' y, конечно, для соответствующих интервалов времени Δt и Δt'. В гл. 15 (вып. 2) мы видели, что интервалы времени, относящиеся к движущейся частице, кажутся длиннее интервалов в системе покоя частицы. Поскольку наша частица первоначально была в покое в системе S ', то мы ожидаем, что для малых Δ t
(13.33)
и все получается великолепно. Согласно (13.31) и (13.32),
и если скомбинировать (13.30) и (13.33), то это отношение равно единице.
Вот и выходит, что мы получаем один и тот же результат, независимо от того, анализируем ли мы движение летящей рядом с проволокой частицы в системе покоя проволоки или в системе покоя частицы. В первом случае сила была чисто «магнитной», во втором — чисто «электрической». Оба способа наблюдения показаны на фиг. 13.12 (хотя во второй системе еще есть и магнитное поле В', оно не воздействует на неподвижную частицу).
Фиг. 13.12. В системе S плотность зарядов есть нуль, а плотность тока равна j. Есть только магнитное поле. В системе S' плотность зарядов равна р', а плотность тока j'. Магнитное поле здесь равно В' и существует электрическое поле Е'.
Если бы мы выбрали еще одну систему координат, мы бы нашли некую другую смесь полей Eи В. Электрические и магнитные силы составляют части одного физического явления— электромагнитного взаимодействия частиц. Разделение этого взаимодействия на электрическую и магнитную части в большой степени зависит от системы отсчета, в которой мы описываем взаимодействие. Но полное электромагнитное описание инвариантно; электричество и магнетизм, вместе взятые, согласуются с принципом относительности, открытым Эйнштейном.
Раз электрические и магнитные поля появляются в разных соотношениях при изменении системы отсчета, мы должны проявлять осторожность в обращении с полями Еи В. Если, например, мы говорим о «линиях» Еили В, то не нужно преувеличивать реальность их существования. Линии могут исчезнуть, если мы захотим увидеть их в другой системе координат. Например, в системе S ' имеются линии электрического поля, однако мы не видим их «движущимися мимо нас со скоростью v в системе S ». В системе S линий электрического поля нет вообще! Поэтому бессмысленно говорить что-нибудь вроде: «Когда я двигаю магнит, он несет свое поле с собой, поэтому линии поля Втоже движутся». Нет никакого способа сделать вообще осмысленным понятие о «скорости движущихся линий поля».
Поля суть способ описания того, что происходит в некоторой точке пространства. В частности, Еи Вговорят нам о силах, которые будут действовать на движущуюся частицу. Вопрос «чему равна сила, действующая на заряд со стороны движущегося магнитного поля?» не имеет сколько-нибудь точного содержания. Сила дается величинами Еи Вв точке заряда, и формула (13.1) не изменится, если источник полей Еили Вдвижется (изменятся в результате движения как раз значения Еи В). Наше математическое описание относится только к полям как функциям х, у, z и t , взятым в некоторой инерциальной системе отсчета .
Читать дальшеИнтервал:
Закладка: