Ричард Фейнман - Том 3. Квантовая механика

Тут можно читать онлайн Ричард Фейнман - Том 3. Квантовая механика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 3. Квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 3. Квантовая механика краткое содержание

Том 3. Квантовая механика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить

Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 3. Квантовая механика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как же они соотносятся? К примеру, если оба мы начинаем с одного и того же φ, то мы опишем это φ на языке трех амплитуд < iS |φ> — амплитуд того, что φ переходит в наши базисные состояния в представлении S , а он опишет это φ амплитудами < |φ> — амплитудами того, что состояние φ переходит в базисные состояния в его, Т , представлении. Как проверить, что мы оба на самом деле говорим об одном и том же состоянии φ? Это можно сделать с помощью нашего общего правила II [см. (3.27)]. Заменяя χ любым из его состояний jT , напишем

337 Чтобы связать оба представления нужно задать только девять - фото 196(3.37)

Чтобы связать оба представления, нужно задать только девять комплексных чисел — матрицу < jT | iS >. Эту матрицу затем можно использовать для того, чтобы перевести все его уравнения в нашу форму. Она сообщает нам, как преобразовать одну совокупность базисных состояний в другую. (По этой причине < jT | iS > иногда именуют «матрицей преобразования от представления S к представлению T ». Слова ученые!)

Для случая частиц со спином 1, у которых бывает только тройка базисных состояний (у высших спинов их больше), математическая ситуация напоминает то, что мы видели в векторной алгебре. Каждый вектор может быть представлен тремя числами — компонентами вдоль осей х, у и z. Иначе говоря, всякий вектор может быть разложен на три «базисных» вектора, т. е. векторы вдоль этих трех осей. Но предположим, что кто-то другой решает выбрать другую тройку осей: x', y' и z '. Чтобы представить любой частный вектор, он воспользуется другими (а не теми, что мы) числами. Его выкладки не будут похожи на наши, но окончательный итог окажется таким же. Мы это уже рассматривали раньше и знаем правила преобразования векторов от одной тройки осей к другой.

Вам может захотеться увидать, как действуют квантовомеханические преобразования, и самим попробовать их проделать; для этого мы приведем здесь без вывода матрицы преобразований амплитуд спина 1 от представления S к другому представлению Т для разных взаимных ориентации фильтров S и Т . (В следующих главах мы покажем, как получаются эти результаты.)

Первый случай . У прибора Т ось у (вдоль которой движутся частицы) та же самая, что и у S , но Т повернут вокруг общей оси у на угол α (на фиг. 3.6). (Чтобы быть точными, укажем, что в приборе Т установлена система координат х ', у ', z ', связанная с координатами х, у, z прибора S формулами z'=zcosα+ х sinα; х '= х cosα- z sinα; у '= у .) Тогда амплитуды преобразований таковы:

338 Второй случай Прибор Т имеет ту же ось z что и S но повернут - фото 197(3.38)

Второй случай . Прибор Т имеет ту же ось z, что и S , но повернут относительно оси z на угол β. (Преобразование координат: z'=z; х '= x cosβ+ y sinβ; у '= у cosβ- х sinβ.) Тогда амплитуды преобразований суть

339 Заметьте что любые вращения Т можно составить из описанных двух - фото 198(3.39)

Заметьте, что любые вращения Т можно составить из описанных двух вращений.

Если состояние φ определяется тремя числами

340 и если то же состояние описывается с точки зрения Т тремя числами - фото 199(3.40)

и если то же состояние описывается с точки зрения Т тремя числами

341 тогда коэффициенты jT iS из 338 и 339 дают преобразования - фото 200(3.41)

тогда коэффициенты < jT | iS > из (3.38) и (3.39) дают преобразования, связывающие С i и С ' i . Иными словами. С i очень походят на компоненты вектора, который с точек зрения S и Т выглядит по-разному.

Только у частицы со спином 1 (потому что ей требуются как раз три амплитуды) есть такое тесное соответствие с векторами. Здесь во всех случаях имеется тройка чисел, которая обязана преобразовываться при изменениях координат определенным известным образом. И действительно, здесь есть и такая совокупность базисных состояний, которая преобразуется в точности, как три компоненты вектора . Три комбинации

342 преобразуются в С х С у С z как раз так же как х у z - фото 201(3.42)

преобразуются в С ' х , С ' у , С ' z как раз так же, как х, у, z преобразуются в х ', у ', z '. [Вы можете проверить это с помощью законов преобразований (3.38) и (3.39).] Теперь вы понимаете, почему частицу со спином 1 часто называют «векторной частицей».

§ 8. Другие случаи

Мы начали с того, что подчеркнули, что наши рассуждения о частице со спином 1 явятся прототипом любых квантовомеханических задач. Обобщения требует только количество состояний. Вместо тройки базисных состояний в других случаях может потребоваться n базисных состояний [10] Число базисных состояний n может оказаться (и, вообще говоря, бывает) равным бесконечности. . Форма наших основных законов (3.27) останется той же, если только понимать, что i и j должны пробегать по всем n базисным состояниям. Любое явление можно проанализировать, задав амплитуды того, что оно начинается с любого базисного состояния и кончается тоже в любом базисном состоянии, а затем просуммировав по всей полной системе базисных состояний. Можно использовать любую подходящую систему базисных состояний, и каждый вправе выбрать ту, которая ему по душе; связь между любой парой базисов осуществляется матрицей преобразований n × n . Позже мы подробнее расскажем об этих преобразованиях.

Наконец, мы пообещали рассказать о том, что надо делать, если атомы прямо из печи проходят через какой-то прибор А и затем анализируются фильтром, который отбирает состояние χ. Вы не знаете, каково то состояние φ, в котором они входят в прибор. Лучше всего, наверное, было бы, если бы вы, не думая пока об этой проблеме, занимались такими задачами, в которых вначале имеются только чистые состояния. Но если уж вы на этом настаиваете, так вот как расправляются с этой проблемой.

Прежде всего вы должны быть в состоянии сделать разумные предположения о том, каким образом распределены состояния в атомах, которые выходят из печи. Например, если в печи нет чего-либо «особого», то разумно предположить, что атомы покидают печь, будучи «ориентированы» как попало. Квантовомеханически это соответствует вашему утверждению о том, что о состояниях вы не знаете ничего, кроме того, что треть атомов находится в состоянии (+ S ), треть — в состоянии (0 S ) и треть — в состоянии (- S ). Для пребывающих в состоянии (+ S ) амплитуда пройти сквозь А есть <���χ| А |+ S >, а вероятность |<���χ| А |+ S >| 2. То же и для других. Общая вероятность тогда равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 3. Квантовая механика отзывы


Отзывы читателей о книге Том 3. Квантовая механика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x