Ричард Фейнман - Том 3. Квантовая механика

Тут можно читать онлайн Ричард Фейнман - Том 3. Квантовая механика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 3. Квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 3. Квантовая механика краткое содержание

Том 3. Квантовая механика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить

Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 3. Квантовая механика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы, вероятно, уже слышали раньше о «21-см линии» водорода. Это и есть длина волны спектральной линии в 1420 Мгц между сверхтонкими состояниями. Излучение с такой длиной волны испускается или поглощается атомарным водородным газом в галактиках. Значит, с помощью радиотелескопов, настроенных на волны 21 см (или примерно на 1420 Мгц ), можно наблюдать скорости и расположение сгущений атомарного водорода. Измеряя интенсивность, можно оценить его количество. Измеряя сдвиг в частоте, вызываемый эффектом Допплера, можно выяснить движение газа в галактике. Это одна из великих программ радиоастрономии. Так что мы с вами сейчас ведем речь о чем-то очень реальном, это вовсе не какая-то искусственная задача.

§ 4. Зеемановское расщепление

Хотя с задачей отыскания уровней энергии основного состояния водорода мы и справились, мы все же продолжим изучение этой интересной системы. Чтобы сказать о ней еще что-то, например чтобы подсчитать скорость, с какой атом водорода поглощает или испускает радиоволны длиной 21 см , надо знать, что с ним происходит, когда он возмущен. Нужно проделать то, что мы сделали с молекулой аммиака, — после того как мы нашли уровни энергии, мы отправились дальше и выяснили, что происходит, когда молекула находится в электрическом поле. И после этого нетрудно оказалось представить себе влияние электрического поля радиоволны. В случае атома водорода электрическое поле ничего с уровнями не делает, разве что сдвигает их все на некоторую постоянную величину, пропорциональную квадрату поля, а нам это неинтересно, потому что это не меняет разностей энергий. На сей раз важно уже магнитное поле. Значит, следующим шагом будет написать гамильтониан для более сложного случая, когда атом сидит во внешнем магнитном поле.

Каков же этот гамильтониан? Мы просто сообщим вам ответ, потому что никакого «доказательства» дать не можем, разве что сказать, что именно так устроен атом.

Гамильтониан имеет вид

1027 Теперь он состоит из трех частей Первый член А σ еσ р - фото 766(10.27)

Теперь он состоит из трех частей. Первый член А (σ е·σ р) представляет магнитное взаимодействие между электроном и протоном; оно такое же, как если бы магнитного поля не было. Влияние внешнего магнитного поля проявляется в остальных двух членах. Второй член (-μ е σ е · В) — это та энергия, которой электрон обладал бы в магнитном поле, если бы он там был один [43] Вспомните, что классически U=- μ · B , так что энергия наименьшая, когда момент направлен по полю. Для положительно заряженных частиц магнитный момент параллелен спину, для отрицательных — наоборот. Значит, в (10.27) μ р — число положительное, а μ е — отрицательное. . Точно так же последний член (-μ р σ р· В) был бы энергией протона-одиночки. Согласно классической физике, энергия их обоих вместе была бы суммой их энергий; по квантовой механике это тоже правильно. Возникающая из-за наличия магнитного поля энергия взаимодействия равна просто сумме энергий взаимодействия электрона с магнитным полем и протона с тем же полем, выраженных через операторы сигма. В квантовой механике эти члены в действительности не являются энергиями, но обращение к классическим формулам для энергии помогает запоминать правила написания гамильтониана. Как бы то ни было, (10.27) — это правильный гамильтониан.

Теперь нужно вернуться к началу и решать всю задачу сызнова. Но большая часть работы уже сделана, надо только добавить эффекты, вызываемые новыми членами. Примем, что магнитное поле Впостоянно и направлено по z . Тогда к нашему старому гамильтонову оператору ^ Н надо добавить два новых куска; обозначим их ^ Н ':

Пользуясь табл 101 мы сразу получаем 1028 Смотрите как удобно - фото 767

Пользуясь табл. 10.1, мы сразу получаем

1028 Смотрите как удобно Оператор Н действуя на каждое состояние - фото 768(10.28)

Смотрите, как удобно! Оператор Н ', действуя на каждое состояние, дает просто число, умноженное на это же состояние. В матрице < i | H '| j > есть поэтому только диагональные элементы, и можно просто добавить коэффициенты из (10.28) к соответствующим диагональным членам в (10.13), так что гамильтоновы уравнения (10.14) обращаются в

1029 Форма уравнений не изменилась изменились только коэффициенты И пока - фото 769(10.29)

Форма уравнений не изменилась, изменились только коэффициенты. И пока В не меняется со временем, можно все делать так же, как и раньше.

Подставляя C i = a i e -( i / ) Et , мы получаем

1030 К счастью первое и четвертое уравнения попрежнему не зависят от - фото 770(10.30)

К счастью, первое и четвертое уравнения по-прежнему не зависят от остальных, так что снова пойдет в ход та же техника. Одно решение — это состояние | I >, для которого

или 1031 Другое решение 1032 Для остальных двух уравнений - фото 771

или

1031 Другое решение 1032 Для остальных двух уравнений потребуется - фото 772(10.31)

Другое решение

1032 Для остальных двух уравнений потребуется больше работы потому что - фото 773(10.32)

Для остальных двух уравнений потребуется больше работы, потому что коэффициенты при а 2и a 3уже не равны друг другу. Но зато они очень похожи на ту пару уравнений, которую мы писали для молекулы аммиака. Оглядываясь на уравнения (7.20) и (7.21), можно провести следующую аналогию (помните, что тамошние индексы 1 и 2 соответствуют здесь индексам 2 и 3):

1033 Раньше энергии давались формулой 725 которая имела вид 1034 - фото 774(10.33)

Раньше энергии давались формулой (7.25), которая имела вид

1034 Подставляя сюда 1033 получаем для энергии В гл 7 мы - фото 775(10.34)

Подставляя сюда (10.33), получаем для энергии

В гл 7 мы привыкли называть эти энергии Е I и Е II теперь мы их обозначим Е - фото 776

В гл. 7 мы привыкли называть эти энергии Е I и Е II , теперь мы их обозначим Е III и E IV :

1035 Итак мы нашли энергии четырех стационарных состояний атома водорода - фото 777(10.35)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 3. Квантовая механика отзывы


Отзывы читателей о книге Том 3. Квантовая механика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x