Ричард Фейнман - КЭД – странная теория света и вещества

Тут можно читать онлайн Ричард Фейнман - КЭД – странная теория света и вещества - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство АСТ, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    КЭД – странная теория света и вещества
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-982850-1
  • Рейтинг:
    2.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - КЭД – странная теория света и вещества краткое содержание

КЭД – странная теория света и вещества - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Американский физик Ричард Фейнман – один из создателей атомной бомбы, специалист по квантовой электродинамике, Нобелевский лауреат, но прежде всего – незаурядная, многогранная личность, не вписывающаяся в привычные рамки образа «человека науки». Великолепный оратор, он превращал каждую свою лекцию в захватывающую интеллектуальную игру. На его выступления рвались не только студенты и коллеги, но и люди просто увлеченные физикой.
В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.
В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.
Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!»

КЭД – странная теория света и вещества - читать онлайн бесплатно ознакомительный отрывок

КЭД – странная теория света и вещества - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь давайте снова посмотрим на частичное отражение света от стеклянной пластинки. Как оно происходит? Я говорил, что свет отражается от передней и от задней поверхностей. Говоря о поверхностях, я делал некоторое упрощение. На самом деле поверхности никак не действуют на свет. Входящий в стекло фотон рассеивается электронами атомов стекла, и в детектор попадает новый фотон. Интересно, что сложение миллиардов маленьких стрелочек, отвечающих амплитуде рассеяния входящего фотона всеми электронами стекла, можно заменить сложением всего двух стрелок – для «передней поверхности» и «задней поверхности» – и получить тот же самый ответ. Давайте разберемся почему.

Чтобы с этой точки зрения разобраться в отражении света от стеклянной пластинки, надо принять во внимание временное измерение. Прежде, говоря о свете монохроматического источника, мы использовали вымышленные часы, запускаемые на время, пока летит фотон. Стрелка часов определяла поворот амплитуды для данного пути. В формуле Р ( А – В ) (для амплитуды попадания фотона из одной точки в другую) никакие повороты не упоминаются. Что произошло с часами? Что произошло с поворотами?

В первой лекции я просто сказал, что источник света является монохроматическим. Чтобы правильно разобраться в частичном отражении от пластинки, мы должны внимательно рассмотреть источник монохроматического света. Амплитуда излучения фотона источником, как правило, меняется со временем: со временем изменяется направление этой амплитуды. Источник белого света – смеси многих цветов – излучает фотоны хаотическим образом: направление амплитуды изменяется резко и нерегулярно, рывками. Но, конструируя монохроматический источник, мы делаем прибор, в котором все так тщательно устроено, что легко вычислить амплитуду излучения фотона в определенный момент времени: амплитуда вращается с постоянной скоростью, как стрелка часов. (На самом деле стрелка амплитуды вращается с той же скоростью, что и стрелка наших воображаемых часов, но в противоположном направлении – см. рис. 67.)

Рис 67 Монохроматический источник света это прекрасно сконструированный - фото 68

Рис. 67. Монохроматический источник света – это прекрасно сконструированный прибор, излучающий фотон легко пред-сказуемым способом: амплитуда излучения фотона в определенный момент поворачивается против часовой стрелки с течением времени. Поэтому амплитуда излучения фотона в более поздний момент имеет меньший угол поворота. Будем считать, что весь излучаемый источником свет распространяется со скоростью с (поскольку расстояния велики).

Скорость вращения зависит от цвета света: как и ранее, амплитуда синего источника вращается примерно в два раза быстрее, чем амплитуда красного источника. Итак, то, что мы использовали в качестве «воображаемых часов», было монохроматическим источником: на самом деле угол поворота амплитуды для данного пути зависит от того, в какой момент фотон вылетел из источника.

После излучения фотона стрелка не поворачивается, пока он летит из одной точки пространства-времени в другую. Хотя формула для Р ( А – В ) и утверждает, что у света есть амплитуда распространения со скоростью, отличной от с , в нашем эксперименте между источником и детектором относительно большое расстояние (по сравнению с атомными размерами), и сохраняется только вклад в длину Р ( А – В ), вносимый движением со скоростью с .

Чтобы заново начать рассматривать частичное отражение, прежде всего полностью определим наблюдаемое событие: детектор в А щелкает в определенный момент Т . Затем разделим стеклянную пластинку на несколько очень тонких слоев, скажем, шесть (см. рис. 68, а ). Анализ, проведенный на второй лекции, показал, что практически весь свет отражается от середины зеркала, и хотя каждый электрон и рассеивает свет по всем направлениям, после суммирования всех стрелок для каждого слоя единственным местом, где стрелки взаимно не гасятся, окажется как раз середина слоя, где свет будет рассеиваться в одном из двух возможных направлений: назад к детектору или прямо в глубь стекла. Поэтому результирующая стрелка события может быть получена путем сложения шести стрелок, соответствующих рассеянию света в шести промежуточных точках X 1…., Х 6, расположенных друг над другом по всей толщине стекла.

Хорошо, давайте вычислим теперь стрелку для каждого из шести путей, по которым может лететь фотон, – через шесть точек X 1…, Х 6. Каждый путь состоит из четырех этапов. (Это значит, что надо будет перемножить четыре стрелки.)

Рис 68 а б Начнем новый анализ частичного отражения с того что разделив - фото 69

Рис. 68, а – б. Начнем новый анализ частичного отражения с того, что, разделив стеклянную пластинку на несколько слоев (в данном случае шесть), будем рассматривать различные пути, по которым свет может распространяться от источника к стеклу и назад, к детектору в точке А. Единственные существенные точки в стекле (где не гасятся амплитуды рассеяния) расположены в середине каждого слоя; реальное положение этих точек в глубине стекла показано на рис. а; на рис. б они изображены как вертикальные линии на пространственно-временном графике. Событие, вероятность которого мы рас-считываем, это срабатывание детектора в точке А в определенный момент времени Т. Поэтому событие изображается точкой (с координатами А и Т) на пространственно-временном графике. Каждый способ, которым может произойти событие, состоит из четырех последовательных этапов, поэтому надо перемножить четыре стрелки. Эти этапы показаны на рис. б: 1) в определенный момент фотон покидает источник (стрелки у отметок Т 1 …., Т 6 изображают амплитуды этого события в шесть различных моментов времени); 2) фотон летит из источника в одну из точек стекла (шесть взаимоисключающих возможностей изображены в виде шести волнистых линий, идущих вправо вверх); 3) электрон в одной из точек рассеивает фотон (этот этап изображен в виде короткой жир-ной вертикальной линии); 4) новый фотон летит к детектору и попадает в него в условленное время Т (волнистая линия, направленная влево вверх). Амплитуды этапов 2, 3 и 4 одинаковы для всех шести возможностей, в то время как амплитуды первого шага различны по сравнению с фотоном, рассеянным на поверхности стекла (в точке Х 1 ), фотон, рассеянный в глубине стекла, например в точке Х 2 , должен покинуть источник раньше, в момент времени Т 2 .

– Этап 1: В определенный момент источник излучает фотон.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




КЭД – странная теория света и вещества отзывы


Отзывы читателей о книге КЭД – странная теория света и вещества, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x