Ричард Фейнман - КЭД – странная теория света и вещества

Тут можно читать онлайн Ричард Фейнман - КЭД – странная теория света и вещества - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство АСТ, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    КЭД – странная теория света и вещества
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-982850-1
  • Рейтинг:
    2.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - КЭД – странная теория света и вещества краткое содержание

КЭД – странная теория света и вещества - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Американский физик Ричард Фейнман – один из создателей атомной бомбы, специалист по квантовой электродинамике, Нобелевский лауреат, но прежде всего – незаурядная, многогранная личность, не вписывающаяся в привычные рамки образа «человека науки». Великолепный оратор, он превращал каждую свою лекцию в захватывающую интеллектуальную игру. На его выступления рвались не только студенты и коллеги, но и люди просто увлеченные физикой.
В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.
В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.
Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!»

КЭД – странная теория света и вещества - читать онлайн бесплатно ознакомительный отрывок

КЭД – странная теория света и вещества - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 63 При рассеянии света фотон может сначала поглощаться электроном а - фото 64

Рис. 63. При рассеянии света фотон может сначала поглощаться электроном, а потом излучаться (а). Такая последовательность событий необязательна, как видно из примера б. Пример иллюстрирует странную, но реальную возможность: электрон излучает фотон, мчится вспять во времени, чтобы поглотить фотон, а затем снова летит вперед во времени.

Рассмотрим теперь другое событие. Мы начинаем, имея фотон и электрон, и заканчиваем, имея фотон и электрон. Один из способов осуществления этого события состоит в том, что сначала фотон поглощается электроном, электрон немного пролетает и испускает новый фотон. Этот процесс называется рассеянием света. Рисуя диаграммы и проводя расчеты для рассеяния, мы должны учитывать некоторые необычные возможности (см. рис. 63). Например, электрон может испустить фотон до того, как поглотит фотон ( б ).

Еще более странная возможность ( в ) состоит в том, что электрон испускает фотон, затем летит вспять во времени , поглощает фотон и затем снова летит вперед во времени. Путь, пройденный таким «движущимся вспять» электроном, может быть настолько длинным, что проявится в реальном физическом эксперименте в лаборатории. Его поведение учитывается этими диаграммами и выражением Е ( А – В ).

Движущийся вспять электрон, если его рассматривать в правильном направлении времени, оказывается таким же, как обычный электрон, за исключением того, что притягивается к нормальному электрону – мы говорим, что у него «положительный заряд». (Если бы я учел поляризацию фотонов, стало бы очевидно, почему j у движущегося вспять электрона имеет обратный знак, делая его заряд положительным.) По этой причине он называется «позитроном». Позитрон – это частица, родственная электрону. Он представляет собой пример «античастицы» [22].

Это общее явление. Каждая частица в Природе обладает амплитудой движения вспять во времени и, следовательно, имеет античастицу. Когда частица и античастица сталкиваются, они аннигилируют и образуют другие частицы. (При аннигиляции электрона и позитрона получается обычно фотон или два фотона.) А что же фотоны? Как мы видели, фотоны совершенно не изменяются при движении вспять во времени – поэтому они сами себе античастицы. Видите, как ловко мы сделали исключение частью правила.

Я хотел бы показать вам, как выглядит этот движущийся вспять электрон, когда сами мы движемся вперед по времени. Проведя для наглядности ряд параллельных прямых, я разделю диаграмму на временные отрезки точками Т 0…, Т 10 (см. рис. 64). Мы начинаем в момент времени Т 0: электрон и фотон движутся навстречу друг другу. Внезапно в момент времени Т 3 фотон превращается в две частицы, позитрон и электрон. Позитрон живет недолго, вскоре, в момент Т 6, он сталкивается с электроном, и при их аннигиляции образуется новый фотон. Тем временем электрон, образовавшийся из первоначального фотона, продолжает двигаться в пространстве-времени.

Рис 64 Рассмотрим пример в на рис 63 двигаясь только вперед во времени как - фото 65

Рис. 64. Рассмотрим пример в на рис. 63, двигаясь только вперед во времени (как мы вынуждены поступать в лаборатории). От момента времени Т 0 до Т 3 мы видим, что электрон и фотон летят навстречу друг другу. Внезапно в момент Т 3 фотон «распадается» и появляются две частицы: электрон и частица ново-го типа – «позитрон» (представляющая собой электрон, движущийся вспять во времени). Позитрон движется навстречу исходному электрону. В момент времени Т 5 позитрон аннигилирует с исходным электроном и образуется новый фотон. Тем временем образованный исходным фотоном электрон продолжает лететь вперед по пространству-времени. Такая последова-тельность событий наблюдается в лаборатории, она автоматически, не требуя никаких изменений, учитывается формулой Е(А – В).

Следующее, о чем я хотел бы рассказать, – это электрон в атоме. Чтобы понять поведение электронов в атомах, мы должны добавить в нашу картину мира еще один важный объект – тяжелое ядро в центре атома, содержащее по крайней мере один протон. (Протон – это ящик Пандоры, который мы откроем на следующей лекции.) Я не буду объяснять вам в этой лекции истинные законы поведения ядра – они очень сложны. Но в данном случае, когда ядро спокойно, мы можем приближенно описать его как частицу с амплитудой попадания из одной точки пространства-времени в другую по формуле Е ( А – В ), но со значительно большей величиной параметра п . Поскольку ядро по сравнению с электроном очень тяжелое, мы можем приближенно считать, что, двигаясь во времени, оно стоит практически на одном месте в пространстве.

Рис 65 Электрон удерживается вблизи от ядра атома путем обмена фотонами с - фото 66

Рис. 65. Электрон удерживается вблизи от ядра атома путем обмена фотонами с протоном («ящик Пандоры», в который мы заглянем в четвертой лекции). Воспользуемся пока приблизительным определением протона как неподвижной частицы. Здесь показан атом водорода, состоящий из протона и электрона, обменивающихся фотонами.

Простейший атом – атом водорода – состоит из протона и электрона. Протон удерживает танцующий вокруг него электрон, обмениваясь с ним фотонами (см. рис. 65) [23]. Атомы, содержащие более одного протона и соответствующее количество электронов, также рассеивают свет (атомы атмосферного воздуха рассеивают солнечный свет и делают небо голубым), но на диаграммах для таких атомов было бы так много прямых и волнистых линий, что получилась бы полная неразбериха!

Рис 66 Рассеяние света электроном атома это явление лежащее в основе - фото 67

Рис. 66. Рассеяние света электроном атома – это явление, лежащее в основе частичного отражения света стеклом. Диаграмма показывает один из способов, которым такое со-бытие может произойти в атоме водорода.

Теперь я хотел бы показать вам диаграмму рассеяния света электроном в атоме водорода (см. рис. 66). В то время как электрон и ядро обмениваются фотонами, извне к атому прилетает фотон, сталкивается с электроном и поглощается им; затем излучается новый фотон. (Как обычно, надо рассмотреть и другие возможности, например, сначала излучается новый фотон, а потом уже поглощается старый фотон.) Амплитуды всех возможных способов рассеяний фотона электроном могут быть просуммированы в результирующую стрелку посредством операций сжатия и поворота. (Впоследствии мы будем называть эту стрелку « S ».) Ее величина зависит от ядра и расположения электронов в атоме, она различна для различных веществ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




КЭД – странная теория света и вещества отзывы


Отзывы читателей о книге КЭД – странная теория света и вещества, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x