Марк Волынский - Необыкновенная жизнь обыкновенной капли
- Название:Необыкновенная жизнь обыкновенной капли
- Автор:
- Жанр:
- Издательство:Издательство «Знание»
- Год:1986
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Волынский - Необыкновенная жизнь обыкновенной капли краткое содержание
Необыкновенная жизнь обыкновенной капли - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако возникает вопрос: как же получилось, что не хватило уравнений и строгую логику пришлось заменить гипотезой? Победителей не судят, но если бы предположение ученого не оправдалось? Быть может, какой-то фактор выпал из рассмотрения, какие-то связи не были учтены? Вопрос законный, серьезный. Для ответа мобилизуем все ту же испытанную связку «опыт—теория». Вглядимся внимательней в явление, вернувшись опять к форсунке. Но теперь приделаем к ней, продолжая выходной канал, длинную прозрачную трубку — сопло из плексигласа. Раньше мы видели поток всегда с тыла или на выходе, сейчас можем взглянуть сбоку. Действительно, в профильной проекции обнаружилось нечто новое: у самого входа в сопло из камеры виднеется крутая ступенька (иногда не одна) — резкое падение толщины жидкого колечка; внезапный рост радиуса вихря r m (рис. 10). Сразу появляется информация к размышлению: что за скачок? Где такое бывает? Поищем аналогии — путь в науке очень полезный. Картотека памяти выдает необычный, запомнившийся образ: ведь это гидравлический прыжок, и возникает он действительно в потоках, сходных с нашим.
Гидравлики подробно изучают течение в открытом русле водослива (например, оросительный канал).
Жидкость там течет под действием силы тяжести — аналог потока с центробежным давлением в форсунке (оно тоже зависит от массы). Интересное это явление — гидравлический прыжок. Плавно ускоряясь, течет под уклон вода в канале по совершенно гладкому дну, уровень меняется медленно, равномерно. Но вот, разогнавшись до какой-то предельной скорости, поток скачком меняет свою высоту, прыгает иногда почти отвесной стенкой, образуя один или несколько горбов-порогов. Потом на уменьшенном уклоне течение снова идет плавно, но уже на другом уровне. Гидравлический прыжок возникает как раз в сечении, где скорость потока w достигает скорости с распространения поверхностных так называемых тяжелых волн *.
* Предположение о равенстве скорости течения жидкости в сопле форсунки скорости распространения тяжелых (центробежных) волн впервые было высказано И. И. Новиковым.
Из теории волнового движения известна простая формула определения скорости распространения волн: c = √ gh, здесь g — ускорение под действием силы тяжести, h — высота уровня жидкости.
Перенесем на форсунку это уравнение прыжка. Теперь система уравнений замыкается без каких-либо дополнительных гипотез, поскольку появилось новое соотношение, определяющее радиус вихря, а именно равенство w и с:
Вот оно, потерянное уравнение. Вместе со старыми уравнениями вся система приводит к принципу максимума расхода — теперь он уже не гипотеза, а следствие теории течения в форсунке.
В чем физический смысл условия w = c ? Скорость тяжелых волн с — это скорость передачи импульсов в разгоняющемся потоке. Они передают информацию сверху вниз по течению с помощью бегущей волны жидкости малой амплитуды: «Поток ускоряется, издали меняйте форму течения, постепенно подстраивайте уровень жидкости на всем протяжении пути». Пока сигналы проходят по трассе, движение идет плавно, уровень меняется постепенно. Но вот жидкость к некоторому сечению разогналась до скорости волн — информация уже не опережает потока жидкости, а движется параллельно с потоком, не оставляя времени для перестройки. Потому тесно, «задние напирают на передних», возникает так называемый кризис течения. И вот поток «взбунтовался», встает отвесной стеной, резким уступом, нарушив монотонность процесса. Произошел, естественно, и прыжок скорости, поскольку резко изменилось проходное сечение. Потом, на ином уровне подъема, жидкость успокаивается, и снова течение становится плавным. Значит, в крутящемся потоке нашей форсунки есть критическое сечение, где скорость равна критической, и это сечение в самом начале сопла. Дальше вниз по потоку, что ни делай, расход, формирующийся в истоке, уже не увеличишь, поток перед критическим сечением не перестроишь — туда просто не дойдут никакие импульсы-сигналы.
Итак, догадка Г. Н. Абрамовича о существовании максимума расхода подтвердилась экспериментом, эксперимент помог найти аналогию между гидравлическим прыжком жидкости в открытом русле и режимом максимального расхода в форсунке с центробежным давлением.
Но, если мы взялись докапываться до самой сути, можно поставить новый вопрос: «А где же всеобщность исходных фундаментальных уравнений, о которых говорилось раньше? Они ведь должны предсказать все явления, все опытные факты. Нельзя ли из самих исходных уравнений вывести гидравлический прыжок?»
Чтобы ответить на этот вопрос, вновь приходится возвратиться к истории этой проблемы, начиная с того периода, когда практика настойчиво потянула нашу связку «опыт—теория» на новый уровень.
Обычные виды топлива обладают заметной вязкостью. Новые (для того времени) реактивные двигатели космических ракет и больших авиалайнеров, где число и разнообразие форсунок все возрастали, требовали более точных расчетов. Конструкция самой форсунки усложнялась, она обрастала различными клапанами, изготовлялась по все более высокому классу точности и становилась довольно дорогой деталью. Теория форсунки на основе идеальной жидкости сделала свое важное дело, но теперь уже не всегда давала нужную точность.
Исследователи приняли эстафету дальнейшего движения от теории идеальной жидкости к теории вязкой жидкости применительно к процессам в форсунке. Инженер Л. А. Клячко проводил испытания центробежной форсунки на топливах разной вязкости. Сначала в форсунку подавалось маловязкое топливо — бензин, затем более вязкое — керосин. Первые же опыты, к его удивлению, показали парадоксальный результат: для керосина коэффициент расхода оказался больше, чем для бензина. Клячко сказал готовившему эксперимент механику:
— Быть этого не может: вязкость больше, а расход возрос. Что-то здесь не так! Вы, наверное, плохо уплотнили форсунку, и керосин где-то подтекал.
— Форсунка собрана правильно, герметичность я гарантирую,— с достоинством ответил опытный механик.
Повторный эксперимент (правильность сборки форсунки теперь проверяли вместе придирчивый инженер и задетый за живое механик) дал все тот же результат: на керосине коэффициент расхода больше, чем на бензине. Провели опыт с еще более вязким топливом — соляровым маслом. Коэффициент расхода опять возрос.
Читать дальшеИнтервал:
Закладка: