Александр Волошинов - Математика и искусство
- Название:Математика и искусство
- Автор:
- Жанр:
- Издательство:Просвещение
- Год:1992
- ISBN:5-09-002705-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Волошинов - Математика и искусство краткое содержание
Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Пользуясь выражением для амплитуды стоячей волны (10.10) и учитывая, что 0≤x≤l, найдем неподвижные точки стоячих волн:
Неподвижные точки называются узлами стоячей волны. Ясно, что посередине между узлами расположены точки, в которых отклонения в стоячей волне достигают максимума. Эти точки называются пучностями стоячей волны.
Сделаем общий вывод: колебание конечной струны представляет собой бесконечную сумму стоячих волн u n(х,t), каждая из которых имеет постоянную частоту колебания и изменяющуюся по длине струны амплитуду
В k-й стоячей волне имеется k
пучностей и (k + 1) узлов.
Перейдем теперь к "музыкальному содержанию" решения (10.9) и прежде всего к частотам колебаний. Мы пришли к выводу, что струна колеблется не только всей своей длиной, но одновременно и отдельными частями: половинками, третями, четвертями и т. д. Следовательно, струна издает звук не только основной частоты , но и призвуки частот
. Тон основной частоты струны ω 1называется основным тоном струны , а остальные тона, соответствующие частотам ω 2, ω 3, ..., ω k, ..., называются обертонами (верхними тонами) или гармониками . Основной тон струны принимается за первый обертон (первую гармонику). Именно обертоны, сливаясь в общем звучании с основным тоном, придают звуку музыкальную окраску, называемую тембром .
Различие тембров музыкальных звуков в основном объясняется составом и интенсивностью обертонов у разных источников звуков. Чем больше у звука обертонов, тем красивее, "богаче" он нам кажется. По тембру, т. е. по составу обертонов, мы отличаем звуки одной и той же высоты и одинаковой громкости, воспроизведенные на скрипке или фортепиано, голосом или на флейте. Разумеется, и сам инструмент способен давать различные тембровые окраски, что прежде всего относится к скрипке.
Три первые стоячие волны (гармоники) колеблющейся струны. Колебания конечной струны U(х,t) представимы в виде суммы бесконечного числа стоячих волн usubn/sub(х,t)
У скрипачей есть особый способ необычного по тембру звукоизвлечения — игра флажолетами. Слегка дотрагиваясь пальцем до струны в узлах стоячих волн, но так, чтобы струна не соприкасалась с грифом, скрипач гасит одни обертоны и оставляет другие. В результате возникает мягкий, немного свистящий звук, напоминающий по тембру звучание старинного Деревянного духового инструмента — флажолета. Например, дотронувшись до струны точно посередине, скрипач гасит все гармоники, имеющие в этой точке пучности, и сохраняет только гармоники, имеющие в этой точке узлы, т. е. четные гармоники. Таким образом, самой низкой частотой станет второй обертон .
Но это не будет по тембру звук точно на на октаву выше основного тона , так как он будет составлен только из четных гармоник. Аналогично, дотронувшись до струны в точке l/3, скрипач оставит только гармоники, кратные трем: ω 3, ω 6, ..., и получит флажолет, не похожий на первый, даже если сделать ω 2= ω 3. Игра флажолетами требует виртуозной точности. Ведь если мы не попадем точно в узел, то погасим вообще все гармоники и струна попросту не зазвучит!
Вот какую огромную роль играют в музыке слагаемые u n(х,t) в решении (10.9). Их с полным правом называют звуковой краской музыканта. Но не только музыканты, а и создатели музыкальных инструментов проявляют постоянную заботу об этих слагаемых, от которых зависит тембр звука. Достаточно напомнить об особом "итальянском тембре" скрипок работ знаменитых итальянских мастеров XVI-XVIII веков, представителей нескольких поколений семей Амати, Гварнери, Страдивари.
Из решения (10.9), задавая нужным образом функции f(х) и g(x) и вычисляя интегралы, можно формально получить законы, которые экспериментально обнаружил английский ученый-энциклопедист Томас Юнг (1773 — 1829):
1. Если возбуждать струну в какой-либо точке, то в этой точке возникает пучность и не может образоваться узел.
2. Если затормозить струну в какой-либо точке, то в этой точке возникает узел и не может образоваться пучность.
Из первого закона Юнга следует, что если возбуждать струну, например, точно посередине, то в ней погасятся все гармоники, имеющие в этой точке узел, т. е. все четные обертоны. Значит, мы потеряем половину обертонов и звук станет блеклым. Ясно, что чем дальше от середины мы будем возбуждать струну, тем меньше первых, самых важных гармоник мы потеряем. Тембр звука от этого станет полнее и ярче. Вот почему смычок на скрипке, правая рука на гитаре, молоточки на фортепиано — все они возбуждают струну приблизительно на 1/7-1/10 доли струны от места ее закрепления. Делается это для того, чтобы не потревожить первые обертоны, а значит, не обеднить музыкальный звук. Что касается игры на скрипке флажолетами, то она основана на втором законе Юнга, который является обратным к первому закону.
Прежде чем расстаться с законами Юнга, скажем несколько слов об их создателе. Томас Юнг был удивительным человеком. " Всякий может делать то, что делают другие" — таков был девиз его жизни. И Юнг необычайно преуспел в исполнении этого нелегкого правила. Он был цирковым актером (акробатом и канатоходцем), авторитетным знатоком живописи, играл практически на всех су. Шествовавших в его время музыкальных инструментах, занимался расшифровкой египетских иероглифов, знал массу языков, в том числе латинский, греческий и арабский. И кроме всех этих "увлечений", Юнг получил блестящие результаты в науках: физике (волновая теория света), теории упругости (модуль упругости Юнга), оптике, акустике, астрономии, физиологии, медицине. Юнг написал около 60 глав научных приложений к знаменитой "Британской энциклопедии".
Рассмотрим подробнее основной тон струны. Вспоминая, что , получим формулу для частоты основного тона:
Интервал:
Закладка: