Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пользуясь выражением для амплитуды стоячей волны (10.10) и учитывая, что 0≤x≤l, найдем неподвижные точки стоячих волн:

Неподвижные точки называются узлами стоячей волны Ясно что посередине между - фото 248

Неподвижные точки называются узлами стоячей волны. Ясно, что посередине между узлами расположены точки, в которых отклонения в стоячей волне достигают максимума. Эти точки называются пучностями стоячей волны.

Сделаем общий вывод: колебание конечной струны представляет собой бесконечную сумму стоячих волн u n(х,t), каждая из которых имеет постоянную частоту колебания Математика и искусство - изображение 249и изменяющуюся по длине струны амплитуду В kй стоячей волне имеется k пучностей и k 1 узлов Перейдем теперь к - фото 250В k-й стоячей волне имеется k

пучностей и (k + 1) узлов.

Перейдем теперь к "музыкальному содержанию" решения (10.9) и прежде всего к частотам колебаний. Мы пришли к выводу, что струна колеблется не только всей своей длиной, но одновременно и отдельными частями: половинками, третями, четвертями и т. д. Следовательно, струна издает звук не только основной частоты Математика и искусство - изображение 251, но и призвуки частот Тон основной частоты струны ω 1называется основным тоном струны а остальные - фото 252. Тон основной частоты струны ω 1называется основным тоном струны , а остальные тона, соответствующие частотам ω 2, ω 3, ..., ω k, ..., называются обертонами (верхними тонами) или гармониками . Основной тон струны принимается за первый обертон (первую гармонику). Именно обертоны, сливаясь в общем звучании с основным тоном, придают звуку музыкальную окраску, называемую тембром .

Различие тембров музыкальных звуков в основном объясняется составом и интенсивностью обертонов у разных источников звуков. Чем больше у звука обертонов, тем красивее, "богаче" он нам кажется. По тембру, т. е. по составу обертонов, мы отличаем звуки одной и той же высоты и одинаковой громкости, воспроизведенные на скрипке или фортепиано, голосом или на флейте. Разумеется, и сам инструмент способен давать различные тембровые окраски, что прежде всего относится к скрипке.

Три первые стоячие волны гармоники колеблющейся струны Колебания конечной - фото 253

Три первые стоячие волны (гармоники) колеблющейся струны. Колебания конечной струны U(х,t) представимы в виде суммы бесконечного числа стоячих волн usubn/sub(х,t)

У скрипачей есть особый способ необычного по тембру звукоизвлечения — игра флажолетами. Слегка дотрагиваясь пальцем до струны в узлах стоячих волн, но так, чтобы струна не соприкасалась с грифом, скрипач гасит одни обертоны и оставляет другие. В результате возникает мягкий, немного свистящий звук, напоминающий по тембру звучание старинного Деревянного духового инструмента — флажолета. Например, дотронувшись до струны точно посередине, скрипач гасит все гармоники, имеющие в этой точке пучности, и сохраняет только гармоники, имеющие в этой точке узлы, т. е. четные гармоники. Таким образом, самой низкой частотой станет второй обертон Математика и искусство - изображение 254.

Но это не будет по тембру звук точно на на октаву выше основного тона Математика и искусство - изображение 255, так как он будет составлен только из четных гармоник. Аналогично, дотронувшись до струны в точке l/3, скрипач оставит только гармоники, кратные трем: ω 3, ω 6, ..., и получит флажолет, не похожий на первый, даже если сделать ω 2= ω 3. Игра флажолетами требует виртуозной точности. Ведь если мы не попадем точно в узел, то погасим вообще все гармоники и струна попросту не зазвучит!

Вот какую огромную роль играют в музыке слагаемые u n(х,t) в решении (10.9). Их с полным правом называют звуковой краской музыканта. Но не только музыканты, а и создатели музыкальных инструментов проявляют постоянную заботу об этих слагаемых, от которых зависит тембр звука. Достаточно напомнить об особом "итальянском тембре" скрипок работ знаменитых итальянских мастеров XVI-XVIII веков, представителей нескольких поколений семей Амати, Гварнери, Страдивари.

Из решения (10.9), задавая нужным образом функции f(х) и g(x) и вычисляя интегралы, можно формально получить законы, которые экспериментально обнаружил английский ученый-энциклопедист Томас Юнг (1773 — 1829):

1. Если возбуждать струну в какой-либо точке, то в этой точке возникает пучность и не может образоваться узел.

2. Если затормозить струну в какой-либо точке, то в этой точке возникает узел и не может образоваться пучность.

Из первого закона Юнга следует, что если возбуждать струну, например, точно посередине, то в ней погасятся все гармоники, имеющие в этой точке узел, т. е. все четные обертоны. Значит, мы потеряем половину обертонов и звук станет блеклым. Ясно, что чем дальше от середины мы будем возбуждать струну, тем меньше первых, самых важных гармоник мы потеряем. Тембр звука от этого станет полнее и ярче. Вот почему смычок на скрипке, правая рука на гитаре, молоточки на фортепиано — все они возбуждают струну приблизительно на 1/7-1/10 доли струны от места ее закрепления. Делается это для того, чтобы не потревожить первые обертоны, а значит, не обеднить музыкальный звук. Что касается игры на скрипке флажолетами, то она основана на втором законе Юнга, который является обратным к первому закону.

Прежде чем расстаться с законами Юнга, скажем несколько слов об их создателе. Томас Юнг был удивительным человеком. " Всякий может делать то, что делают другие" — таков был девиз его жизни. И Юнг необычайно преуспел в исполнении этого нелегкого правила. Он был цирковым актером (акробатом и канатоходцем), авторитетным знатоком живописи, играл практически на всех су. Шествовавших в его время музыкальных инструментах, занимался расшифровкой египетских иероглифов, знал массу языков, в том числе латинский, греческий и арабский. И кроме всех этих "увлечений", Юнг получил блестящие результаты в науках: физике (волновая теория света), теории упругости (модуль упругости Юнга), оптике, акустике, астрономии, физиологии, медицине. Юнг написал около 60 глав научных приложений к знаменитой "Британской энциклопедии".

Рассмотрим подробнее основной тон струны. Вспоминая, что Математика и искусство - изображение 256, получим формулу для частоты основного тона:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x