Александр Волошинов - Математика и искусство
- Название:Математика и искусство
- Автор:
- Жанр:
- Издательство:Просвещение
- Год:1992
- ISBN:5-09-002705-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Волошинов - Математика и искусство краткое содержание
Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(10.11)
откуда легко увидеть законы колебания струны, которые экспериментально обнаружили еще древние греки и которые затем переоткрыл и описал в своей "Универсальной гармонии" Марен Мерсенн:
1. Для струн одинаковой плотности и одинакового натяжения частота колебания обратно пропорциональна длине струны (это не что иное, как "первый закон Пифагора — Архита"; см. с. 101).
2. При заданной длине и плотности струны ее частота пропорциональна корню квадратному из натяжения.
3. При заданной длине и натяжении частота струны обратно пропорциональна корню квадратному из ее плотности. (При постоянной плотности чем толще струна, тем меньше частота ее колебаний, т. е. тем ниже звук.)
Разумеется, все эти законы (по крайней мере, качественно) можно было установить на монохорде.
Но обратимся вновь к обертонам. Легко видеть, что частоты обертонов
относятся как числа натурального ряда:
(10.12)
Таким образом, струна издает целый звукоряд тонов, называемый натуральным звукорядом. Теоретически натуральный звукоряд бесконечен. На практике же имеют значение первые 16 обертонов, так как остальные обертоны слишком мало отличаются друг от друга, обладают слишком малой энергией и фактически не слышны.
Натуральный звукоряд. Полагая ω 1= l, частоты натурального звукоряда выражаются натуральным рядом чисел (ω n= n). Натуральный звукоряд содержит все консонансы и все интервалы чистого строя
В самом деле, из (10.12) следует, что интервальный коэффициент двух соседних гармоник ω nи ω n+1равен (n = 1, 2, 3, ...). Поскольку
то мы легко приходим к выводу: с ростом номера п интервал между соседними гармониками натурального звукоряда уменьшается и в пределе стремится к чистой приме (унисону).
На рисунке показаны первые 16 гармоник колеблющейся струны, образующие натуральный звукоряд. Цифры справа обозначают частоты гармоник, считая ω 1= 1, а красная линия (гипербола) отсекает часть струны 1/n, которая колеблется с частотой ω n= n. Мы видим, что второй обертон и основной тон составляют интервал октавы ω 2/ω 1= 2. Третий и второй обертоны — интервал квинты: ω 3/ω 2= 3/2. Четвертый и третий — кварты: ω 4/ω 3= 4/3. Пятый и четвертый — большой терции: ω 5/ω 4= 5/4. Шестой и пятый — малой терции: ω 6/ω 5= 6/5. Но ведь это есть не что иное, как набор совершенных и несовершенных консонансов! Таким образом, мы пришли к разгадке "закона консонансов" — "второго закона Пифагора — Архита" (с. 101 — 102): консонантные интервалы, которые математически выражаются отношением
вида (n = 1, 2, 3, 4, 5), определены самой природой колебания струны! Все консонансы заключены в первых шести гармониках, т. е. первых шести тонах натурального звукоряда, причем по мере удаления от первой гармоники (основного тона) степень консонантности интервала убывает. Итак, закон целочисленных отношений для консонантных интервалов
, который, по преданию, был экспериментально открыт Пифагором на монохорде, является следствием математического решения задачи о колебании струны и непосредственно вытекает из решения (10.9).
Переходя к более высоким гармоникам, нетрудно обнаружить также два интервала тона чистого строя: ω 9/ω 8= 9/8, ω 10/ω 9= 10/9 и интервал полутона чистого строя: ω 16/ω 15= 16/15. Таким образом, все интервалы чистого строя содержатся в натуральном звукоряде ! Вот почему чистый строй более приятен в гармоническом звучании, чем пифагоров строй.
Но и сами тона чистого строя (8.7) почти полностью определены натуральным звукорядом. В самом деле, если рассмотреть октаву между 8-й и 16-й гармониками, принимая частоту 8-й гармоники за единицу (т. е. поделив все частоты на 8), то мы обнаружим в этой октаве все ступени чистого строя, кроме 4-й (4/3) и 6-й (5/3). Следовательно, чистый строй почти целиком содержится в натуральном звукоряде .
Однако это коварное "почти" до сих пор составляет одну из загадок музыки. В самом деле, почему именно 7, 11 и 13-й обертоны (14-й обертон является октавным повторением 7-го) не входят ни в один из музыкальных строев? Знаменитый "фальшивый" 7-й обертон третье столетие не дает покоя теоретикам музыки! С одной стороны, ясно, что неправильно называть этот звук фальшивым, ибо он дан самой природой, которую трудно упрекнуть в фальши. Но с другой стороны, все теоретики музыки, начиная с Рамо, были слишком большими музыкантами, чтобы включить седьмую гармонику в какую-либо музыкальную систему (седьмой звук явно "резал ухо"!). Впрочем, еще в XVIII веке французский музыкальный теоретик Балльер с присущей французу легкостью писал: "Разница между древностью и современностью заключается в том, что тогда начинали считать диссонансы с 5-го призвука, а теперь начинают их считать лишь с 7-го". Не пойдет ли развитие музыки так, что в новых музыкальных системах найдется место и 7, и 11, и 13-му обертонам?.. А пока молоточки фортепиано, следуя первому закону Юнга, ударяют на 1/8 длины струны, чтобы максимально снизить силу злополучного 7-го обертона.
Наконец, отметим еще одну важную особенность натурального звукоряда. Глядя на рисунок, мы видим, что 4, 5 и 6-я гармоники образуют мажорное звучание ( до-ми-соль ). А если к ним добавить еще и 1-ю, и 2-ю гармоники, то получится мажорное трезвучие в сопровождении октавного баса! Итак, мажорное трезвучие составлено из ближайших гармоник (4, 5 и 6-й) основного тона (баса мажорного трезвучия) . Следовательно, оно не только консонирует, но и обладает акустическим единством, заложенным в самой природе колебания струны. Это дало основание одному из последних универсальных ученых — немецкому математику, физику, физиологу и психологу Герману Гельмгольцу (1821 — 1894) утверждать, что "мажорный аккорд наиболее натурален из всех аккордов".
Читать дальшеИнтервал:
Закладка: