Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Тут можно читать онлайн Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Аттикус, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Восемь этюдов о бесконечности. Математическое приключение
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Аттикус
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-389-19538-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение краткое содержание

Восемь этюдов о бесконечности. Математическое приключение - описание и краткое содержание, автор Хаим Шапира, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение - читать онлайн бесплатно ознакомительный отрывок

Восемь этюдов о бесконечности. Математическое приключение - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Хаим Шапира
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Это соответствие сюръективно потому что каждый из элементов множества В - фото 74

Это соответствие сюръективно, потому что каждый из элементов множества В (четырех манекенщиц) образует пару по меньшей мере с одним элементом множества А (футболистом). Заметим, что в этом случае два футболиста «отображаются на» одну из манекенщиц (Кейт). В то же время следующее соответствие не будет сюръективным:

Почему Потому что один из элементов множества В Жизель не образует пары ни с - фото 75

Почему? Потому что один из элементов множества В (Жизель) не образует пары ни с одним из элементов множества А. Обратите внимание, что на двух манекенщиц «отображаются» по два футболиста, в результате чего бедная Жизель остается в одиночестве.

Если между двумя множествами А и В существует и одно-однозначное, и сюръективное соответствие, это означает, что элементы этих множеств могут быть разбиты на «идеальные» пары – каждому индивидуальному элементу множества А может быть сопоставлен элемент множества В, а каждому элементу множества В может быть сопоставлен элемент множества А. Соответствие, которое является одновременно инъективным и сюръективным, называется биективным [46] Или взаимно-однозначным. .

Совершенно ясно, что, если оба множества А и В конечны, то существование между ними и одно-однозначного, и сюръективного соответствий возможно, только если оба множества содержат одинаковое количество элементов. Поясню: наличие одно-однозначного (инъективного) соответствия означает, что количество элементов множества В равно количеству элементов множества А или больше его, а наличие сюръективного соответствия предполагает, что большее или равное число элементов содержит множество А (поскольку каждый элемент множества В может быть связан с несколькими элементами множества А). В сочетании эти два условия означают, что, если А и В – конечные множества, то количество элементов в них должно быть одинаковым.

Можно продемонстрировать, что соответствие между множеством футболистов и множеством манекенщиц является одновременно одно-однозначным и сюръективным тогда, и только тогда, когда оба эти множества содержат одно и то же количество элементов, как в следующем примере (приведенном для тех, кто тоскует по прошлому):

Вот еще один пример В нем также имеются однооднозначное и сюръективное - фото 76

Вот еще один пример:

В нем также имеются однооднозначное и сюръективное соответствие и нам даже не - фото 77

В нем также имеются одно-однозначное и сюръективное соответствие, и нам даже не пришлось привлекать футболистов или манекенщиц.

Теперь, прояснив все эти вопросы, вернемся к бесконечным множествам. Исходя из изложенного выше, кажется естественным дать следующее определение равенства количества элементов двух множеств (будь то конечных или бесконечных):

ОПРЕДЕЛЕНИЕ РАВНОМОЩНОСТИ

Два множества А и В имеют равную мощность, если между элементами множества А и элементами множества В существует некоторое (любое) соответствие, одновременно одно-однозначное (инъективное) и сюръективное.

Что же это за «мощность»? Возможно, вы помните, что мы уже упоминали ее некоторое время назад. Смысл мощности конечных множеств вполне ясен.

ОПРЕДЕЛЕНИЕ МОЩНОСТИ КОНЕЧНЫХ МНОЖЕСТВ

В случае конечных множеств мощность – это просто вычурное обозначение «количества элементов множества». Например, множество A = {17, 42, 1729, 1 234 321} содержит четыре элемента; следовательно, его мощность (которую называют также кардинальным числом) равна 4. Это утверждение можно записать следующим образом: #A = 4 [47] В русской математической литературе чаще используется другое обозначение мощности: |А|. Есть и другие варианты: А= или card(A). Мы будем использовать символ #, как это делает автор книги. .

Однако в случае бесконечных множеств понятие «количества элементов множества» не очевидно и не может быть очевидно. Когда речь идет о бесконечных множествах, мы можем только сравнивать их мощности.

Парадокс Галилео Галилея

В начале XVII в. Галилео Галилей описал парадокс, который был назван его именем. В парадоксе Галилея речь идет об одно-однозначном и сюръективном соответствиях между множеством натуральных чисел {1, 2, 3, 4…} и множеством полных квадратов {1, 2, 4, 9, 16…}. Из элементов этих множеств можно составить пары, как показано в приведенной ниже таблице. Должно быть очевидно, что для каждого элемента множества А существует один, и только один, соответствующий ему элемент множества В, и наоборот:

Возникающий здесь парадокс состоит в том что множество натуральных чисел и его - фото 78

Возникающий здесь парадокс состоит в том, что множество натуральных чисел и его собственное подмножество – то есть подмножество, не равное самому этому множеству [48] А также не являющееся пустым множеством, но это сейчас не важно. , в данном случае множество полных квадратов, – имеют одинаковую мощность (то есть между ними существует одно-однозначное и сюръективное соответствие). Как такое может быть, если натуральных чисел больше, чем квадратов, то есть в одном множестве должно быть больше элементов, чем в другом? Как же они могут быть равномощными?!

Георг Кантор Morphart Creation Shutterstockcom Галилео Галилей Morphart - фото 79

Георг Кантор

© Morphart Creation / Shutterstock.com

Галилео Галилей Morphart Creation Shutterstockcom ОПРЕДЕЛЕНИЕ ПАРАДОКСА - фото 80

Галилео Галилей

© Morphart Creation / Shutterstock.com

ОПРЕДЕЛЕНИЕ ПАРАДОКСА

Положение или предположение, противоречащее общепринятому мнению; утверждение или ощущение, кажущееся противоречивым или идущим вразрез со здравым смыслом; нечто выглядящее или представленное абсурдным, но могущее быть истинным.

Как замечательно, что мы столкнулись с парадоксом! Теперь у нас есть надежда чего-нибудь добиться.

Нильс Бор

Как я согласен с Нильсом Бором! Парадоксы прекрасно помогают как следует встряхнуть процесс размышлений.

Галилей считал, что этот парадокс, о котором он писал в «Беседах о двух новых науках» (Discorsi e dimostrazioni matematiche intorno a due nuovi scienze attenenti alla mecanica e i movimenti locali, 1638), доказывает, что в разговоре о бесконечных множествах нельзя использовать прилагательные вроде «равный», «больший» или «меньший»; более того, как мы уже упоминали гораздо раньше в этой книге, существам с конечным разумом вообще лучше держаться подальше от всего того, что касается бесконечности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хаим Шапира читать все книги автора по порядку

Хаим Шапира - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Восемь этюдов о бесконечности. Математическое приключение отзывы


Отзывы читателей о книге Восемь этюдов о бесконечности. Математическое приключение, автор: Хаим Шапира. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x