Айзек Азимов - Числа: от арифметики до высшей математики

Тут можно читать онлайн Айзек Азимов - Числа: от арифметики до высшей математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Эксмо, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Числа: от арифметики до высшей математики
  • Автор:
  • Жанр:
  • Издательство:
    Эксмо
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-699-52723-6
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Числа: от арифметики до высшей математики краткое содержание

Числа: от арифметики до высшей математики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Знаменитый фантаст и популяризатор науки сэр Айзек Азимов в этой книге решил окунуть читателя в магию чисел Свой увлекательный рассказ Азимов начинает с древнейших времен, когда человек использовал для вычислений пальцы, затем знакомит нас со счетами, а также с историей возникновения операций сложения, вычитания, умножения и деления Шаг за шагом, от простого к сложному, используя занимательные примеры, автор ведет нас тем же путем, которым шло человечество, совершенствуя свои навыки в математике.

Числа: от арифметики до высшей математики - читать онлайн бесплатно полную версию (весь текст целиком)

Числа: от арифметики до высшей математики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Переносим счеты на бумагу

Когда мы считаем, используя арабские цифры, то первое, что следует сделать, — это запомнить суммы чисел от нуля до девяти. Как мы учимся считать? Сначала запоминаем, что 1 + 1 = 2, 2 + 3 = 5, 4 + 5 = 9, 6 + 7= 13 и так далее. Очень важно также усвоить, что 0 + 0 = 0.

Когда мы считаем на счетах, запоминать ничего не надо. Необходимо только научиться считать от одного до десяти. На этом этапе преимущества расчетов при помощи чисел, записанных на бумаге, еще незаметны. Кажется, что счеты удобнее.

А теперь попробуем сложить два больших числа, например 5894 и 2578. Все, что для этого нужно, — это уметь складывать числа в пределах десяти. Сначала разобьем числа на единицы, десятки, сотни и тысячи, то есть на разряды.

Теперь разобьем число 1300 на 1000 и 300 160 на 100 и 60 а 12 на 10 и 2 - фото 7

Теперь разобьем число 1300 на 1000 и 300, 160 на 100 и 60, а 12 на 10 и 2. Теперь надо просто прибавить тысячи к тысячам, сотни к сотням, десятки к десяткам. В результате получаем: 8000 и 400 и 70 и 2, то есть 8472.

Упрощенно процесс сложения можно изобразить так:

Упрощение заключается в том что мы не записываем нули и переносим единицы - фото 8

Упрощение заключается в том, что мы не записываем «нули» и переносим «единицы» в следующий разряд, то есть десятки переносим в колонку десятков и так далее.

Вычитание — это процесс, обратный сложению. Предположим, надо из 531 вычесть 298. Мы также разбиваем числа на разряды:

Вначале может показаться что нам придется вычитать 8 из 1 и 90 из 30 Но это - фото 9

Вначале может показаться, что нам придется вычитать 8 из 1, и 90 из 30. Но это не так, мы ведь можем занять один десяток и одну сотню из следующих разрядов. Перепишем таблицу в новом виде:

Таким образом получаем ответ 233 Когда мы производим вычитание в столбик то - фото 10

Таким образом, получаем ответ: 233.

Когда мы производим вычитание в столбик, то следуем именно этому принципу, хотя форма записи более упрощенная.

Человек, привыкший считать на счетах, сможет произвести эту операцию гораздо быстрее, чем средний ученик, вычисляющий разность этих двух чисел на бумаге. Однако счеты требуют, кроме всего прочего, наработки чисто механических навыков.

В то же время, когда мы считаем в столбик, мы записываем все этапы, и легко проверить правильность расчетов. Используя счеты, этого сделать нельзя. Метод подсчета в столбик настолько же эффективнее подсчета на счетах, насколько изображение чисел на счетах эффективнее, чем показывать числа на пальцах.

Пересекаем нулевую отметку

Каждый первоклассник, изучающий арифметику, знает, что сложить можно любые два числа. Он также знает, что к вычитанию это правило не относится.

Можно вычесть 5 из 7 и получить 2. Можно вычесть 7 из 7 и получить 0. А можно ли вычесть 8 из 7?

В Древней Греции на этот вопрос отвечали отрицательно. Как можно произвести действие, в результате которого получается меньше, чем ничего? Ведь «ничего» — это последний предел, дальше идти некуда.

Эта точка зрения торжествовала вплоть до 1500-х годов. А в наши дни кажется совершенно очевидным, что могут существовать числа, меньшие, чем ничего, то есть меньшие ноля.

Предположим, у вас есть семь долларов, а тут к вам подходит ваш приятель и напоминает о вашем долге в восемь долларов. Будучи честным человеком, вы тут же возвращаете ему семь долларов и говорите приятелю, что вернете ему остаток в один доллар, как только получите эту сумму.

Теперь у вас осталось меньше, чем ничего, ведь денег у вас нет, а, напротив, есть долг в один доллар. Другими словами, если из семи вычесть восемь, мы получаем число, на единицу меньшее, чем ноль. Что же тут трудного или непонятного?

Предположим, вы собираетесь дойти до города, который находится в семи километрах к югу от того места, где вы находитесь. Итак, вы идете на юг. Проходите один километр, и вам остается пройти еще шесть, проходите два километра, и вам остается еще пять. Проходите семь километров — и вот вы на месте. До города осталось пройти ноль километров.

Но вы настолько рассеянны (или настолько упрямы), что продолжаете двигаться дальше и проходите еще один километр к югу. Итак, вы прошли восемь километров и оказались на расстоянии в один километр к югу от города. Итак, до города было семь километров, вы прошли восемь. Значит, вы получаете число меньше нуля. Конечно, вы можете сказать, что расстояние начало увеличиваться снова. Но ведь теперь вы двигаетесь в противоположном направлении. Разве это одно и то же?

Для того чтобы прояснить ситуацию, нарисуем вертикальную линию и отметим на ней точкой положение города. Эту точку мы будем считать точкой отсчета или нулем. Теперь нанесем на прямую по несколько равных делений выше и ниже нулевой точки. Пусть каждое деление соответствует одному километру.

Числа выше точки отсчета (то есть к северу от города) будем называть обычными (или положительными), а числа ниже точки отсчета (то есть к югу от города) будем называть числами, меньшими нуля, или отрицательными.

Теперь нам понадобится специальный символ, который поможет различить положительные и отрицательные числа. Обычно для этого используют систему обозначений, основанную на способе, которым можно получить это число. Любое положительное число получается в результате сложения других положительных чисел. Символом сложения является знак «+», поэтому положительные числа обозначаются +1, +2, +3 и так далее. Само название «положительное число» говорит о том, что это число реально существует.

Отрицательные числа получаются как результат вычитания, скажем, при вычитании (2 - 3) мы получаем число на единицу меньше нуля. Его обозначают -1. Таким образом, отрицательные числа обозначают -1, -2, -3, и так далее. [1] Символ (+) перед положительным числом появился где-то в 1500-х годах. В те времена операцию сложения обозначали как &, например «2 плюс 3» записывали как «2&3». В скорописи значок «&» постепенно трансформировался в «φ», а потом в «+». Что же касается происхождения знака «-», то на этот счет существует множество различных теорий, но ни одна из них не кажется достаточно убедительной.

То, что числа, меньшие нуля, получили название отрицательных, не случайно. Даже когда математики освоили операции с числами, меньшими нуля, надо было подчеркнуть, что эти числа не существуют в действительности.

Символ (+) перед положительным числом появился где-то в 1500-х годах. В те времена операцию сложения обозначали как &, например «2 плюс 3» записывали как «2&3». В скорописи значок «&» постепенно трансформировался в «φ», а потом в «+». Что же касается происхождения знака «-», то на этот счет существует множество различных теорий, но ни одна из них не кажется достаточно убедительной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Числа: от арифметики до высшей математики отзывы


Отзывы читателей о книге Числа: от арифметики до высшей математики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x