Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Плоские сечения.При фиксированных y 0 и z 0 кривая, отражающая изменение температуры вдоль оси x , является дробной броуновской функцией из прямой в прямую, и ее размерность равна 2−H . При фиксированных z 0 и T 0 изотерма на плоскости определяется неявным уравнением T(z 0 ,x,y) . Такие изотермы также имеют размерность D=2−H . Если не считать значения D , они идентичны береговым линиям, рассмотренным в главе 28.
Пространственные сечения.При фиксированном z 0 сечение представляет собой график функции T(x,y,z 0 ) , фрактал размерности 3−H . При H=½ он, по определению, идентичен броуновскому рельефу на иллюстрациях в главе 28. При H=⅓ - это дробный броуновский рельеф на тех же иллюстрациях.
ОБЪЯСНЕНИЕ ИЛЛЮСТРАЦИЙ 25 И 26
При фиксированном T 0 изоповерхность, определяемая неявным уравнением T(x,y,z)=T o , представляет собой трехмерное обобщение береговой линии и демонстрирует нам новый вид фрактального множества с размерностью D=3−H . Так, D=3−½ в гауссовой неперсистентной турбулентности Бюргерса и D=3−⅓ в гауссовой антиперсистентной турбулентности Колмогорова.
Такие поверхности представлены на рис. 26, тайну происхождения которого можно, наконец, объяснить. Для контраста на рис. 25 изображена изоповерхность персистентной функции T(x,y,z) с H=0,75 . Поверхности, из-за огромного количества вычислений, пришлось весьма сильно сгладить. Тот факт, что различие в значении D оказывает на общую форму поверхностей вовсе не такое радикальное влияние, как можно было ожидать, объясняется на с. 372.
X СЛУЧАЙНЫЕ ТРЕМЫ. ТЕКСТУРА
31 ТРЕМЫ В ИНТЕРВАЛЕ. ЛИНЕЙНАЯ ПЫЛЬ ЛЕВИ
Структура этой группы глав несколько запутана. Понятия случайных трем и текстуры сойдутся вместе только в главе 35, где будет показано, как можно управлять текстурой. В главе 34 понятие текстуры вводится вне особой связи с тремами; здесь описаны факты, которые можно было бы разбросать по нескольким предыдущим главам, однако ради сохранения целостности рассмотрения я предпочел собрать их в одном месте.
Что касается глав 31 – 33, то текстура в них совсем не упоминается, а тремы активно используются для построения случайных фракталов, многие из которых встретятся нам впервые. Новые фракталы (как и те, что рассматривались в предыдущих – броуновских – главах) свободны от временных и/или/ пространственных решеток.
В настоящей главе мы поговорим о случайных пылевидных множествах, ограниченных прямой, и попытаемся применить их к решению проблемы шума, с которой мы впервые столкнулись в главе 8, а также подготовим почву для их обобщения на плоскость и пространство; различные варианты такого обобщения будут описаны дальше, в главах 32 и 33.
Главная практическая цель глав 32, 33 и 35 – внести вклад в построение модели скоплений галактик; впервые возможности решения этой проблемы мы обсуждали в главе 9.
УСЛОВНО СТАЦИОНАРНЫЕ ОШИБКИ [21]
В главе 8 мы с восторгом обнаружили, что канторова пыль представляет собой вполне приемлемую модель главных характерных особенностей некоторых избыточных шумов в первом приближении. Однако мы даже не попытались проверить действительное соответствие модели реальным данным. Причина, очевидно, заключается в том, что мы заранее знали – никакого соответствия здесь нет и в помине. Канторова пыль слишком правильна для того, чтобы служить точной моделью любого из известных мне естественных иррегулярных феноменов. В частности, коэффициенты самоподобия канторовой пыли ограничены величинами вида r k . Кроме того, способ построения канторовой пыли также накладывает свой отпечаток (весьма неудачный, надо сказать): канторово множество не сможет быть совмещено само с собой посредством сдвига – иными словами, оно не является инвариантным относительно сдвига.
Иррегулярность можно легко привнести – для этого существует рандомизация. Что касается инвариантности при сдвигах, то от нашей искомой замены канторову множеству потребуется лишь инвариантность в статистическом смысле. В рамках вероятностной терминологии это означает, что множество должно быть стационарным или, по меньшей мере, удовлетворять некоторому подходящим образом смягченному условию стационарности.
В главе 23 было предложено весьма простое средство для частичного достижения этой цели. В настоящей главе мы продвинемся еще на три шага вперед.
Первый шаг можно позаимствовать из самой ранней реалистичной модели перемежаемости. В работе [21] мы начали с некоторого конечного приближения пыли с порогами ε>0 и Ω<���∞ , а затем случайным образом перемешали пустоты, чтобы добиться их статистической независимости друг от друга. Интервалы длины ε между последовательными пустотами мы оставили неизменными. В главе 8 показано, что относительное количество пустот, длина которых превышает u , задается в канторовой пыли почти гиперболической ступенчатой функцией. Рандомизация по-новому интерпретирует эту функцию в качестве распределения вероятностей больших отклонений Pr(U>u) .
В результате получаем рандомизированную канторову пыль с ε>0 . К сожалению, ступени распределения Pr(U>u) все еще сохраняют в себе следы исходных значений N и r . Поэтому в [21] мы сгладили эти ступени: мы положили, что длины последовательных пустот, измеренные в единицах ε , представляют собой статистически независимые целые числа ≥ 1 , причем их распределение имеет следующий вид:
Pr(U>u)=u −D .
Соответствие этой модели действительности оказалось на удивление хорошим: немецкие государственные телефонные линии показали D~0,3 , а согласно сообщениям других авторов, исследовавших позднее другие каналы, значение D варьируется от 0,1 до почти 1.
Длительности последовательных пустот в нашей с Берегером модели независимы; следовательно, ошибки представляют собой то, что в теории вероятности называется «процессом восстановления» или «возвратным процессом» (см. [147]). Каждая ошибка – это точка возврата, где прошлое и будущее статистически независимы друг от друга и следуют одинаковым для всех ошибок правилам.
ЛИНЕЙНАЯ ПЫЛЬ ЛЕВИ
К сожалению, множество, полученное перемешиванием пустот усеченной канторовой пыли (и сглаживанием их распределения), также не избавлено от недостатков: а) соответствие формулы данным наблюдения по избыточным шумам все еще не полно; б) ограничение ε>0 , возможно, вполне приемлемо для физиков, однако весьма досадно с эстетической точки зрения; в) построение остается неуклюжим и произвольным; и, наконец, г) оно слишком далеко по духу от оригинального построения Кантора.
Читать дальшеИнтервал:
Закладка: