Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
У меня нет никаких данных о проективных площадях, ограниченных линиями уровня глухих долин на уровне моря. Однако, изучив географические карты, можно предположить, что глухих долин на поверхности Земли меньше, чем островов. В контексте той модели, которая полагает Землю плоской, за исключением добавленного к плоскости броуновского рельефа из плоскости в прямую, такая асимметрия не является чем-то неожиданным. Одинаковость показателей распределений островов и глухих долин означает, что площади, например, десятых по величине острова и озера относятся друг к другу так же, как и площади двадцатых по величине острова и озера. Кроме того, в закон Корчака входит некий «префактор» F , который устанавливает абсолютное значение площади десятого по величине острова либо озера. Внимательное изучение приведенных в книге рисунков покажет вам, что в случае континента, окруженного водой, префактор для островов больше, чем для глухих долин (в случае внутреннего моря верно обратное). А в рамках модели броуновского рельефа из сферы в прямую меньшая площадь (Пангея) в большей степени раздроблена, нежели большая площадь (Панталассия).
Как бы то ни было, предыдущее рассуждение ничего не говорит об озерах – за исключением редких и несущественных исключений (таких, как участки рядом с морским берегом, заполненные просочившейся сквозь грунт морской водой) понятия глухих долин и озер не совпадают.
Высота дна озера не обязана удовлетворять неравенству z<0 , а высота уровня его поверхности – равенству z=0 . Еще одна сложность: большинство озер заполняются в точности до краев (т.е. до уровня, находящегося чуть выше уровня седловой точки), однако из этого правила имеются исключения (например, Большое Соленое озеро и озера, заполняющие придонные области глухих долин, перечисленных в начале этого раздела).
ПОНЯТИЕ ЧАШИ
Рассмотрим теперь второй озерный суррогат – тот, что мы обозначили нейтральным геометрическим термином чаша.
Для определения этого понятия представим себе некий ландшафт из водонепроницаемого материала, каждое углубление в котором заполнено водой точно до краев. Для того чтобы выбраться из углубления, капле воды приходится двигаться вверх, а затем вниз. Однако если капля добавляется извне, то она вполне может ускользнуть, вовсе не двигаясь вверх, - только по горизонтали или вниз. Каждое углубление обладает некоторой положительной площадью, следовательно, количество углублений либо конечно, либо бесконечно, но счетно. Ничто не мешает нам допустить, что различные стоки могут быть расположены на разной высоте. Линии уровня рельефа на точной высоте стока состоит из определенного количества непересекающихся замкнутых кривых и еще одной замкнутой кривой, содержащей точку самокасания. На чуть большей высоте самокасание пропадает. А на чуть меньшей высоте петля распадается на две петли, одна из которых вложена в другую.
Углубления из вышеописанного построения, заполненные водой, мы будем называть чашами.
ЧЕРТОВЫ ТЕРРАСЫ
Допустим, что перед нами броуновский рельеф с параметром 0 . Самоподобие такого рельефа не оставляет сомнений в гиперболичности распределения площадей отдельных чаш. Если размерность рельефа D не намного превышает 2, то показатель распределения площадей оказывается близок к единице.
Говоря конкретнее, суть моего предположения заключается в том, что капля воды, падая в случайно выбранную точку нашего рельефа, почти наверное попадает в какую-либо чашу. Если это предположение верно, то совокупность поверхностей чаш представляет собой в некотором роде экстраполяцию террасированных полей, распространенных в Юго-Восточной Азии. Я предлагаю называть такой рельеф чертовыми террасами. Точки, не попадающие в чаши, образуют совокупную береговую линию чаш и представляет собой разветвленную сеть или случайную разновидность салфетки Серпинского. На тот случай, если я не прав и совокупная граница чаш обладает в действительности положительной, а вовсе не нулевой, площадью (см. главу 15), у меня есть запасное предположение, заключающееся в том, что существует некая чаша, произвольно близкая к любой точке, не принадлежащей ни одной из чаш.
БРОУНОВСКАЯ МОДЕЛЬ С УЧЕТОМ ВЫВЕТРИВАНИЯ: ГОРНЫЕ ХРЕБТЫ И ПЛОСКИЕ ДОЛИНЫ
Возможно, кто-то из читателей уже испытывает неодолимое искушение модифицировать мои броуновские модели, предположив, что каждая из чаш броуновского материка B H заполнена грунтом и образует плоскую равнину. Нет нужды графически иллюстрировать получающуюся при этом функцию B * H , так как во всех представляющих для нас интерес случаях (т.е. когда D не намного больше 2) заполнение малых чаш не приведет к сколько-нибудь заметным изменениям во внешнем виде рельефа.
Для того чтобы у нас было чем заполнять чаши, следует допустить наличие выветривания, сглаживающего горы; как мы вскоре убедимся, количество требуемого грунта не так уж велико (если D не намного превышает 2), поэтому разумно будет предположить, что форма гор изменяется не слишком сильно. То обстоятельство, что выветривание сглаживает также и седловые точки, через которые чаши опустошаются, мы пока учитывать не будем.
С позиций настоящего эссе, главное достоинство предлагаемой модификации заключается в том, что при правильно подобранном уровне моря выветренный броуновский рельеф на плоской Земле остается масштабно-инвариантным. Как же такая эрозия влияет на размерность? Имеются данные, согласно которым значение размерности функции B * H находится в интервале между 2 и 3−H (размерность функции B H ).
Докажем, что относительное количество грунта, необходимое для заполнения всех чаш, невелико при D=2+ε . Порядок величины объема материка равен типичной длине проекции материка в степени 2+H , что прямо пропорционально площади материка в степени 1+H/2 , а объем чаши по отношению к объему материка равен относительной площади чаши в степени 1+H/2 . Поскольку относительная площадь демонстрирует гиперболическое распределение с показателем, близким к единице, и поскольку сумма всех относительных площадей равна 1, можно заключить, что величина ∑(относительная площадь чаши) 1+H/2 весьма мала. Исключения из общего правила возникают тогда, когда наибольшая чаша чрезвычайно велика; такие чаши заполнять необязательно, как это и произошло в случае Большого Соленого озера.
РЕКИ И ВОДОРАЗДЕЛЫ
Интервал:
Закладка: