Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
РАЗБИТЫЕ КАМНИ, ВЗЛЕТНЫЕ ПОЛОСЫ И ТРИБОЛОГИЯ
Очень давно, еще в первой главе, упоминалось о том, что термин фрактальный я произвел от латинского слова fractus , которое описывает внешний вид скола разбитого камня – неправильный и фрагментированный. Одна только этимология, разумеется, не делает поверхность реального каменного скола фракталам, однако эта поверхность явно не является стандартной, а если она еще и масштабно-инвариантна, то она должна быть фрактальной.
Аргумент в пользу масштабной инвариантности: камень состоит из гранул, объединенных в иерархически организованные домены, причем бóльшие домены соединяются друг с другом не так прочно, как их меньшие составляющие. Энергия, затраченная при ударе о камень, с наибольшей легкостью потратилась бы на разделение больших доменов, однако нет причин ожидать, что такое разделение осуществимо геометрически, а значит, поверхность разлома скорее всего будет сочетать в себе участки, принадлежащие междоменным границам различных иерархических уровней.
Наука об износе и трении называется трибологией. Название происходит от греческого слова τριβω «тереть, растирать». Данные работы [509] (после коррекции неверного анализа; см. [25]) укрепляют нас в предположении, что с помощью дробных броуновских поверхностей можно представить в первом приближении взлетно-посадочные полосы в аэропортах (а также многие естественные негладкие поверхности). Экспериментальные значения D (полученные из графика 7−2D в [509], рис. 1) изменяются в интервале от 2 до 3.
ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ НЕФТИ И ДРУГИХ ПРИРОДНЫХ РЕСУРСОВ
Теперь, когда мой «принцип», провозглашающий масштабную инвариантность рельефа, выдержал всесторонние испытания, настала пора рассмотреть одно следствие из него. Как будет показано в главе 38, можно ожидать, что любая величина, так или иначе связанная с этим рельефом, будет следовать гиперболическому распределению вероятностей (такому, например, как закон Ципфа или закон Парето). Так и в самом деле происходит довольно часто. По правде говоря, моему исследованию береговых линий (см. главу 5), в котором было высказано предположение о том, что рельеф Земли масштабно-инвариантен, предшествовала работа 1962 г. [338], в которой я обнаружил, что распределения, связанные с нефтью и другими природными ресурсами, являются гиперболическими. Этот результат противоречит общепринятому мнению, согласно которому распределение указанных величин следует логарифмическому нормальному закону. Различие чрезвычайно значительно, так как при гиперболическом распределении получается гораздо больше ресурсов, чем при логарифмическом нормальном. В 1962 г. мало кто услышал, однако я пока не сдался.
О минералах мы еще поговорим в главе 39, в разделе нелакунарные фракталы.
УПРОЩЕНИЯ: ПЕРИОДИЧЕСКИЕ ПОВЕРХНОСТИ И ПОВЕРХНОСТИ СРЕДИННОГО СМЕЩЕНИЯ
Поскольку мои броуновские и дробные броуновские рельефы основываются на весьма сложных алгоритмах, возникает необходимость в приближениях или упрощениях. Так, например, на рис. 374, 377 и 379 вы видите пуассоновское приближение нашего гауссова процесса. А на рис. 370 – 373 и С5 – С15 непериодическая функция от x и y заменена периодической функцией, вычисленной с помощью методов быстрого преобразования Фурье и затем «обрезанной» так, чтобы ее центральный участок остался не затронут периодичностью.
Кроме того, для генерации фрактальных поверхностей, которые мы обозначим через B * H(x,y) , я использовал срединное смещение (как в главе 26). Такие поверхности легче всего реализовать, применяя в качестве инициатора равносторонний треугольник J . Так как значения B * H(x,y) на вершинах треугольника J заданы, на первом этапе функция интерполируется по отдельности на каждую из трех срединных точек сторон треугольника J посредством того же процесса, какой мы применяли к координатным функциям броуновской функции B * H(t) . На следующем этапе интерполируем на девять срединных точек второго порядка и так далее.
Результат, можете быть уверены, получается куда более реалистичным, нежели любая нефрактальная поверхность или большинство фрактальных неслучайных поверхностей. Однако стационарен ли он? Приращение ΔB * H=B * H(x,y)−B * H(x+Δx,y+Δy) должно зависеть только от расстояния между точками (x,y) и (x+Δx, y+Δy) . В нашем же случае ΔB * H явно зависит от x,y , Δx и Δy . Следовательно, поверхность B * H нестационарна, даже если H=½ .
Я также рассмотрел и сравнил друг с другом дюжину других упрощений (на этот раз стационарных) и надеюсь вскоре опубликовать результаты сравнения.
Рис. 370 и 371. Броуновские озерные ландшафты, обыкновенные и дробные (размерности от D~2,1 до D=5/2 , по часовой стрелке)
Верхний пейзаж на рис. 371 представляет собой пример дробного броуновского рельефа поверхности Земли. Остальные пейзажи экстраполируют эту модель на более высокие значения размерности D , вплоть до верхней части рис. 370, где изображен обыкновенный броуновский рельеф из плоскости в прямую. Определяющей характеристикой последнего является то, что любой из его вертикальных срезов представляет собой обыкновенную броуновскую функцию из прямой в прямую, как на рис. 338. Броуновский рельеф не годится для моделирования поверхности Земли, так как его элементы слишком иррегулярны, что заметно невооруженным глазом. Это неудовлетворительное соответствие можно выразить и количественно: размерность поверхности (D=5/2) и береговой линии (D=3/2) оказываются слишком велики.
В каждом пейзаже высота вычисляется для точек пересечения широт и долгот, образующих квадратную решетку. Программой предусматривается также моделирование освещения от источника, располагающегося слева под углом 60° к горизонту; наблюдение осуществляется из точки, приподнятой на 25° над уровнем моря. Более подробное описание можно найти в пояснениях к цветным иллюстрациям.
Интервал:
Закладка: