Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Потенциальной полезностью обладают и рельефы с размерностью D , близкой к 3, однако их довольно трудно подобающим образом передать на рисунке. Достаточно заметить, что изображенная на рис. 377 береговая линия с D~3 напоминает затопленную аллювиальную равнину. Очевидно, что в инструментарии строителя статистических моделей найдется место для всех значений параметра H .
КОМОГРАФИЧЕСКИЕ ПРИНЦИПЫ
Космографический принцип из главы 22 можно переформулировать применительно к рельефу. Усиленный космографический принцип сочетает в себе вероятностные понятия стационарности и изотропии. Следовательно, можно считать, что рельеф Z(x,y) на поверхности плоской Земли отвечает усиленному космографическому принципу, если порождающие этот рельеф правила одинаковы во всех системах отсчета, в которых начало координат (x 0 ,y 0 ,z 0 ) удовлетворяет условию z 0 =0 , а ось z вертикальна. В частности, указанные правила должны оставаться инвариантными при изменении значений x 0 и y 0 и при вращении горизонтальных осей. Мой броуновский рельеф на плоской Земле, равно как и его дробная версия, этому принципу не удовлетворяют.
Однако они удовлетворяют «условной» версии космографического принципа, в которой начала координат выбирается таким образом, чтобы удовлетворять условию z 0 =B(x 0 ,y 0 ) (начало координат лежит на поверхности Земли).
Предпринимались попытки согласовать рельеф посредством стационарного процесса. При этом на плоскость z=0 накладывается правильная решетка, а высотам внутри каждой отдельной ячейки этой решетки приписываются значения, представляющие собой независимые случайные величины. Такие модели не могут объяснить ни одного из рассмотренных в этой главе скейлинговых законов.
Броуновский рельеф на поверхности шарообразной Земли находится в соответствии с космографическим принципом в его усиленной форме, особенно когда речь идет о крупных участках поверхности – в этом случае усиленная форма наиболее удобна. Условный принцип здесь выполняется тем более, его предпочтительнее применять к локальным эффектам.
ГОРИЗОНТ
Для наблюдателя, расположенного на некоторой конечной высоте над поверхностью Земли, горизонт состоит из нескрытых точек наибольшей видимой высоты, образующих вокруг наблюдателя замкнутую кривую.
Когда рельеф представляет собой возмущение на сферической поверхности Земли, горизонт, очевидно, расположен на некотором конечном расстоянии от наблюдателя.
Когда рельеф есть броуновское или дробное броуновское возмущение на плоской горизонтальной поверхности, существование горизонта перестает быть столь очевидным: на каждую высокую гору может найтись более высокая гора, расположенная несколько дальше, и так далее до бесконечности. В действительности же относительная высота горы, расположенной на расстоянии R от наблюдателя является величиной порядка R H , так что тангенс угла наклона прямой (соединяющей наблюдателя с вершиной горы) над горизонтальной плоскостью равен приблизительно R H−1 и стремится к нулю при R→∞ . Следовательно, горизонт определен и здесь.
Задавшись целью достичь более глубокого понимания сути явления, разделим расстояние от наблюдателя до горизонта на его среднее значение. На плоской Земле эта функция статистически независима от высоты, на которой находится наблюдатель. В случае же шарообразной Земли, по мере увеличения высоты наблюдателя линия горизонта устремляется к окружности. Кроме того, горизонт плоской Земли расположен над плоскостью, проходящей через наблюдателя, независимо от его высоты. Что касается горизонта шарообразной Земли, то он находится ниже упомянутой плоскости – при условии, что наблюдатель расположен достаточно высоко. В общей сложности, наблюдаемые свойства горизонта подтверждают сферическую форму Земли. Страшно подумать, что было бы, окажись это не так.
«ХОРОШО МОТИВИРОВАННАЯ» ДРОБНАЯ БРОУНОВСКАЯ МОДЕЛЬ ЗЕМНОГО РЕЛЬЕФА
Как обычно, остается только удивляться, почему модели, выбранные за простоту, оказываются столь притягательными с позиций применимости. У меня есть некоторые соображения на этот счет, однако я не питаю иллюзий относительно их убедительности (см. главу 42).
Прежде всего, можно построить функцию B H (P) так же, как мы строили B(P) - путем наложения друг на друга прямолинейных разломов (см. [380]). Однако разломы эти больше не могут иметь опасных стен; по мере приближения к дну разлома уклон стены должен увеличиваться. К сожалению, поперечное сечение такого разлома представляет собой довольно надуманную конструкцию, а стало быть, такой подход не годится.
Более предпочтительным представляется начать с броуновской модели, а затем попытаться уменьшить размерность, как это было сделано при моделировании речного стока в главе 27. Исключительно локальное сглаживание преобразует поверхность с бесконечной площадью в поверхность, площадь которой конечна. С другой стороны, эта процедура совершенно не затрагивает крупные элементы поверхности. Таким образом, локальное сглаживание заменяет объекты, имеющие одинаковую во всех масштабах вполне определенную размерность, объектами, которые демонстрируют глобальную эффективную размерность 5/2 и локальную эффективную размерность 2.
Вообще, после K различных сглаживаний с различными основными масштабами мы получаем K+1 зону с разными размерностями, связанные переходными зонами. Однако целое в этом случае может стать неотличимо от фрактала с некоторой промежуточной размерностью. Иными словами, наложение феноменов, каждый из которых обладает вполне определенным масштабом, может имитировать масштабную инвариантность.
С другой стороны, масштабно-инвариантный феномен часто самопроизвольно разлагается воспринимающим его сознанием в некую иерархию, каждый уровень которой имеет свой масштаб. Например, описанные в главе 9 скопления галактик вовсе не обязательно соответствуют реальности, как будет показано в главах 32 – 35. А значит, не стоит спешить следовать рекомендации Декарта и делить всякую сложную проблему на части. Хотя наш мозг самопроизвольно представляет геоморфологические конфигурации в виде совокупности элементов с резко различными масштабами, это вовсе не означает, что так оно и есть в действительности.
К счастью, опорной поверхностью земного рельефа является сфера, а, следовательно, ему присущ конечный внешний порог. Таким образом, мы совершенно спокойно можем допустить, что всевозможные перестройки, которым подвергалась Земля за свою долгую геологическую историю, предполагают порядок пространственных масштабов, не превышающий размеров континентов. Еще одно реалистическое допущение, заключающееся в том, что различные участки поверхности характеризуются различной величиной параметра H , позволяет этим перестройкам разниться по относительной интенсивности.
Читать дальшеИнтервал:
Закладка: