Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В [347], воспользовавшись множеством, предложенным Полем Леви, я построил усовершенствованный вариант искомого множества, лишенный недостатков (а) и (б). Позвольте мне назвать такое множество пылью Леви. При заданном значении D пыль Леви является единственным множеством, сочетающим в себе два желаемых свойства. Как и в рандомизированной усеченной канторовой пыли, прошлое и будущее, рассматриваемые из принадлежащей этому множеству точки, независимы друг от друга. Как и канторова пыль, пыль Леви статистически тождественна самой себе при уменьшении с произвольным коэффициентом подобия r в интервале от 0 до 1 – ничем подобным канторова пыль похвастаться не может.
Оказывается, нуль – множество броуновского движения (глава 25) представляет собой пыль Леви с D=½ .
К сожалению, метод, использованный Леви при введении своего множества, сохраняет вышеупомянутые недостатки (в) и (г). К тому же, он весьма деликатен в формальном смысле: требуется, чтобы значение u было не просто целым числом ≥ 1 , но и могло принимать любые положительные вещественные значения с Pr(U>u)=u −D вплоть до u=0 . Так как 0 −D =∞ , общая «вероятность» также бесконечна. Метод, используемый для устранения этой, по всей видимости, нелепой возможности, весьма важен и интересен, однако никакого отношения к нашей работе не имеет.
К счастью, от этих трудностей легко избавиться, приняв более естественный способ построения «трем», предложенный в [371].
ДЕЙСТВИТЕЛЬНЫЕ И ВИРТУАЛЬНЫЕ ТРЕМЫ
Предварительное замечание: я утверждаю, что было бы очень полезно описать исходную канторову пыль с помощью сочетания «действительных» и «виртуальных» трем. Начинаем – как обычно – с интервала [0,1] и вырезания его средней трети ]⅓,⅔[ . После этого этапа сущность построения остается той же, однако формальное описание изменяется. Мы делаем вид, что средние трети на втором этапе вырезаются из каждой трети исходного интервала [0,1]. Хотя вырезание средней трети из уже вырезанной средней трети не оказывает сколько-нибудь заметного воздействия, виртуальные тремы вскоре окажутся весьма удобными. Далее аналогичным образом вырезаем средние трети из каждой девятой части интервала [0,1], затем из каждой 27 –й и т.д. Заметим, что распределение количества трем, длина которых превосходит u , задается теперь ступенчатой функцией, общий характер изменения которой пропорционален уже не u −D , а u −1 . Характер зависимости от u сохраняется неизменным при различных правилах створаживания; от метода построения зависят только расположение ступеней и коэффициент пропорциональности.
ТРЕМЫ В ИНТЕРВАЛЕ И СООТВЕТСТВУЮЩИЕ ПУСТОТЫ [371]
В работе [371] я рандомизировал канторово построение путем сглаживания ступеней распределения и выбором расположения трем и их длин случайным образом, независимо друг от друга. Наконец, для реализации пропорциональности u −1 предполагается, что количество трем, длина которых превышает u , а центр приходится на некий интервал длины Δt , имеет математическое ожидание, равное (1−D * )Δt/u , и пуассоновское распределение. Причина введения обозначения 1−D * вскоре прояснится.
Будучи независимыми, тремы могут пересекаться, чем они и занимаются с большим удовольствием: вероятность того, что какую-либо трему ни разу не пересечет другая трема, равна нулю. Иными словами, понятия тремы и пустоты (или паузы) больше не совпадают: термином пустота мы теперь обозначаем интервалы, образованные перекрывающимися тремами. Возникает вопрос: сливаются ли все тремы, в конце концов, в одну гигантскую пустоту, или в интервале остаются непокрытые ими точки? Мы сначала объявим ответ, а затем, в следующем разделе, обоснуем его с помощью наглядного рассуждения на примере процесса рождения и покажем, что непокрытые точки образуют невынужденные кластеры.
Рассмотрим интервал, не покрытый полностью тремами с длиной больше ε 0 , и введем меньшие тремы, длина которых превышает движущийся порог ε , убывающий с ε 0 до 0. Устремив при D * ≤0 порог ε к 0, мы почти наверняка (вероятность стремится к 1) получим интервал, в котором не остается непокрытой ни одна точка. При 0 * <1 может получиться то же самое, однако почти полной уверенности тут уже нет.
Даже в пределе существует некоторая положительная вероятность, что какой-то участок («трема – фрактал») останется непокрытым. В [371] доказывается, что этот трема – фрактал представляет собой не что иное, как пыль Леви с размерностью D=D * .
Короче говоря, D= max (D * ,0) .
ПРОЦЕСС РОЖЕНИЯ И НЕВЫНУЖДЕННАЯ КЛАСТЕРИЗАЦИЯ В ПЫЛИ ЛЕВИ
При построении, описанном в главе 8, канторовы ошибки поступают иерархическими пакетами или «кластерами», причем интенсивность кластеризации находится в соответствии с показателем D , Это свойство сохраняется и тогда, когда паузы перемешаны случайным образом, однако доказательство этого утверждения весьма запутано и мало что проясняет.
Напротив, доказательство того же результата для пыли со случайными тремами является очень простым и представляет подлинный интерес.
Суть, опять же, заключается в том, чтобы начать с трем, длина которых несколько больше порога ε , затем многократно умножать ε на некоторый коэффициент r<1 (скажем, r=⅓ ) с тем, чтобы значение ε устремилось к нулю. Начинаем с межпаузного интервала, не содержащего трем, ограниченного двумя « ε - паузами». Добавление трем с длинами между ε/3 и ε приводит иногда к совершенно опустошительному результату: стирается весь интервал. Существует, однако, неплохая вероятность того, что воздействие будет значительно более мягким: а) ограничивающие « ε - паузы» растягиваются в более длинные (ε/3) - паузы и б) внутри нашего межпаузного интервала появляются дополнительные малые (ε/3) - паузы. Заново определенные межпаузные интервалы неизбежно выглядят как кластеризованные. Аналогичным образом порождаются и подкластеры, только (ε/3) нужно заменить на (ε/9),...,3 −n ε,...
Эволюция этих кластеров при n→∞ управляется новым процессом – процессом рождения и гибели. Как и в классической теории (см. главу 23), кластеры гибнут или множатся независимо от других кластеров с тем же n , равно как и от истории их семей. Вероятность стирания длинного межпаузного интервала меньше, чем вероятность стирания короткого, и кроме того, длинный интервал порождает в среднем более многочисленное потомство. При возрастании величины 1−D * интервалы между ε - паузами становятся короче, а некоторые интервалы между (ε/3) - паузами исчезают вовсе. Таким образом, ожидаемое количество потомков уменьшается двумя путями. Значение D * =0 является критическим в том смысле, что при D * ≤0 семейство почти наверное обречено на вымирание, тогда как при D * >0 существует положительная вероятность того, что семья будет процветать и множиться вечно.
Читать дальшеИнтервал:
Закладка: