Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
ПОЛЕТ КОШИ И D=1
Воспользуемся для представления процесса субординации наглядным примером. Если исходной кривой является броуновский след с размерностью D=2 , то для получения размерности D=1 нам необходимо найти способ понизить D на единицу. Имея дело с классическими фигурами евклидовой геометрии, добиться такого понижения очень легко. В случае плоскости достаточно взять ее сечение прямой, в случае З – пространства – его сечение плоскостью, а в случае 4 – пространства - его сечение 3 – пространством. Из главы 23 нам известно, что то же правило годится и для случайных фрактальных творогов, а из главы 25 – что размерность броуновской функции из прямой в прямую равна 3/2 , в то время как размерность ее нуль – множества и всех сечений, не перпендикулярных оси t , равна ½ .
Расширив этот метод вычитания 1 из D по формальной аналогии, можно заподозрить, что должным образом выбранные сечения броуновского следа должны, как правило, имеет размерность 2−1=1 . Это подозрение и в самом деле подтверждается (см. [148], с. 348). Более того, можно и нужно расширить упомянутый метод на плоские сечения следа в обычном 3 – пространстве и на трехмерные сечения следа в 4 – пространстве (обозначим его измерения через x, y, z и «юмор»).
Возьмем в качестве исходного броуновский след из прямой в 4 - пространство и рассмотрим точки, координата «юмор» которых равна 0. Можно представить, что эти «серьезные» точки порождаются в том порядке, в каком они посещаются соответствующим броуновским движением, и что расстояния между этими посещаемыми точками независимы и изотропны. Следовательно, серьезные точки можно рассматривать как промежуточные остановки случайного полета, правила построения которого существенно отличаются от правил построения броуновского движения. Такое блуждание мы будем называть движением (или полетом) Коши. При заданных моментах времени 0 и t плотность вероятности вектора из точки Π(0) в точку Π(t) представляет собой число, кратное значению выражения
t −E[1+|∏(t)−∏(0)| 2t −2] −E/2 .
Формальное допущение D=1 подтверждается в работах С. Дж. Тейлора [561, 562]. Полет Коши проиллюстрирован на одном из видов рис. 414.
ПОНЯТИЕ СУБОРДИНАЦИИ
Рассмотрим внимательнее построение из предыдущего раздела. Броуновское движение из прямой в E - пространство посещает «серьезные» точки в те моменты времени, когда одна из его координатных функций из прямой в прямую обращается в нуль. Но каждая из координатных функций представляет собой одномерное броуновское движение. Нуль – множества такой функции образуют множество с размерностью D=½ (см. главу 25); вдобавок ко всему из взаимной независимости межнулевых интервалов следует, что рассматриваемое нуль – множество есть линейная пыль Леви. Вывод: движение Коши есть не что иное, как отображение линейной пыли Леви на броуновское движение. Вспомните об очаровательном римском обычае под названием «децимация», заключавшемся в казни каждого десятого из некоторой недружественной группы людей, и вы увидите, что движение Коши – это результат своего рода фрактальной децимации. Первым этот процесс описал Бохнер [42], он же дал ему имя – субординация. (У Феллера [148] можно найти немало разрозненных, но весьма глубоких замечаний по поводу этого понятия.)
А пока заметим на будущее, что
D следа Коши =D броуновского следа ×D броуновского нуль−множества .
СУБОРДИНАЦИЯ ПРИМЕНИМА И К НЕСЛУЧАЙНЫМ ФРАКТАЛАМ
Для более глубокого понимания природы фрактальной субординации применим ее к некоторым фрактальным кривым Коха и Пеано. (Как это ни странно, но настоящее обсуждение является, по всей видимости, первым случаем упоминания субординации и неслучайном контексте.)
Идея заключается в модификации посредством замены генератора (при неизменном инициаторе) не некоторое подмножество исходного генератора. Такая операция замещает предельное фрактальное множество (которое мы будем называть субординантом) на некоторое субординантное подмножество (или субординат). Рассмотрим сначала примеры, а затем введем весьма важное правило – правило умножения размерностей.
Пример с D<2 .Возьмем четырехзвенный генератор троичной кривой Коха (его мы применяли для построения фигуры на рис. 70). Если стереть второе и третье звенья, получится классический генератор троичной канторовой пыли (рис. 120). Таким образом, канторова пыль является субординантным подмножеством для трети коховой снежинки. Можно получить и другую субординантную пыль, не ограниченную прямой, если стереть, например, первое и третье из N=4 звеньев генератора Коха. В любом случае субординация изменяет размерность ln4 / ln3 на ln2 / ln3. Если стереть только одно звено генератора, то субординантная пыль не окажется подмножеством прямой, хотя ее размерность равна ln3 / ln3 =1 .
Пример с D=2 .Возьмем четырехзвенную ломаную, получаемую на втором этапе построения кривой Пеано – Чезаро (рис. 98), и удалим второе и третье звенья. Новый генератор представляет собой не что иное, как сам интервал [0,1]! Таким образом, прямолинейный интервал является субординатом кривой Пеано – Чезаро (самым что ни на есть тривиальным!) Удалив иной набор из двух звеньев, получим фрактальную пыль с размерностью D=1 . Удаление одного звена дает множество с размерностью ln3 / ln2.
УМНОЖЕНИЕ РАЗМЕРНОСТЕЙ
В главах 6 и 7 мы упоминали о том, что кривые Коха и Пеано можно рассматривать как следы «движений», временной параметр t которых лежит в интервале [0,1]. Если в качестве примера взять генератор снежинки Коха, то это время определяется следующим образом: четыре звена генератора покрываются в те моменты времени, значения которых, разложенные по основанию 4, начинаются, соответственно, с 0, 1, 2 и 3. А, скажем, вторая четверть третьей четверти генератора покрывается в те моменты времени, значения которых, разложенные по основанию 4, начинаются с 0,21 . Рассматриваемые в виде движений, кривые Коха и Пеано сами являются «фрактальными отображениями» интервала [0,1]. В этом смысле воздействие упоминаемой ранее децимации звеньев генератора заключается в том, чтобы удалить те значения t , которые содержат цифры 1 и 2 (или 0 и 3), ограничив тем самым параметр t значениями, принадлежащими определенной канторовой пыли на интервале [0,1].
Читать дальшеИнтервал:
Закладка: