Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
33 КРУГОВЫЕ И СФЕРИЧЕСКИЕ ТРЕМЫ: ЛУННЫЕ КРАТЕРЫ И ГАЛАКТИКИ
Представив линейную пыль Леви в качестве трема – фрактала с помощью случайных трем в форме интервалов (глава 31), мы тут же (глава 32) свернули с намеченного пути в сторону и произвели обобщение этой пыли на плоскость и пространство с помощью процесса субординации. В настоящей же главе (и в следующей за ней) предпринимается попытка непосредственного обобщения случайных трем.
Плоские и пространственные тремы в этой главе представлены кругами и шарами, поэтому наше обобщение оказывается напрямую связано с формами лунных кратеров и метеоритов. Однако наиболее важное применение пространственных трем относится к несколько иной области и не так очевидно. При значении D , близком к 1, трема – фрактал представляет собой пыль и, следовательно, является потенциальным кандидатом на замещение совокупности промежуточных остановок полета Леви при моделировании скоплений галактик. Новизна по сравнению с основанными на случайных блужданиях моделями заключается, главным образом, в том, что галактики в такой модели не упорядоченны вдоль некоего следа. Отсюда получаем выигрыш в априорном правдоподобии и, как следствие, проигрываем в удобстве вычислений, однако, в конечном счете, новая модель все же побеждает благодаря лучшему соответствию реальности: предсказанные с ее помощью ковариантные свойства оказываются заметно ближе к результатам наблюдений. Несферические тремы (глава 35) улучшают соответствие еще больше.
ПЛОСКИЕ И ПРОСТРАНСТВЕННЫЕ ТРЕМЫ
Прежде чем мы приступим к рассмотрению случайных и перекрывающих трем, опишем плоское створаживание на решетке (главы 13 и 14), используя понятие виртуальной тремы. Первый этап каскада заключается в выделении N из b 2 квадратных ячеек для последующего сохранения их в качестве творогов. Иначе можно сказать, что на первом этапе вырезаются b 2 −N квадратных трем. На следующем этапе вырезаются квадратные тремы второго порядка в количестве b 2 (b 2 −N) , включая N(b 2 −N) истинно новых трем и (b 2 −N) 2 «виртуальных» трем (которые и здесь удаляют то, что уже было удалено на предыдущем этапе). И так далее.
Пересчитав истинные и виртуальные тремы, мы обнаружим, что количество трем с площадью, превышающей некоторую величину s , пропорционально 1/s . Аналогичный вывод можно сделать и по отношению к створаживанию в 3 – пространстве: количество трем, объемы которых превышают некоторую величину v , пропорционально 1/v .
Бóльшая часть этой главы (и главы 35) посвящена рассмотрению случая, когда количество независимых трем, сосредоточенные в ячейке со сторонами dx и dy (или dx,dy и dz ), представляет собой пуассоновскую случайную величину с ожиданием
a)>=(C/2a)dxdy ,
v)>=(C/3v)dxdydz .
Соответствующее ожидание в пространстве ℝ E равно
(C/Ev)dx 1 ,...,dx E .
Фрактальные свойства получаемого в результате трема – множества столь же просты, как и в линейном случае, рассмотренном в главе 31. При C<1 эти свойства можно вывести из свойств линейного множества; в предшествующих же эссе было высказано предположение, что упомянутые свойства остаются в силе при всех C . Это предположение получило подтверждение в работе [132].
При C>E трема – множество почти наверное окажется пустым. При C оно представляет собой фрактал с размерностью D=E−C .
Что касается топологии трема – фракталов, то, руководствуясь общими принципами, можно предположить, что трема – множество с размерностью D<1 есть пыль (D T =0) . С другой стороны, при D>1 одних общих принципов недостаточно, и топология определяется формой тремы. Здесь снова возникает задача о перколяции, причем в ином, нежели раньше, фрактальном контексте.
ЛУННЫЕ КРАТЕРЫ И КРУГОВЫЕ ТРЕМЫ
Начнем с одного второстепенного вопроса, который обеспечит нас упрощенной двумерной подготовкой и сам по себе довольно занимателен: какова геометрическая природа множества, не занятого лунными кратерами? Хотя греки называли словом κρατηρ чашу или иной сосуд для питья, большая часть кратеров на поверхности Земли имеет вулканическое происхождение. Большинство людей, однако, полагает, что кратеры, наблюдаемые на поверхности Луны, Марса, юпитерианского спутника Каллисто, а также других планет и их спутников образовались, преимущественно, в результате падений метеоритов.
Чем больше метеорит, тем шире и глубже оказывается образующийся при его ударе о поверхность планеты кратер. Кроме того, большой кратер, явившийся следствием падения тяжелого метеорита, может «стереть с лица планеты» несколько уже существовавших малых кратеров; с другой стороны, падение легкого метеорита вполне может оставить «зазубрину» на краю старого большого кратера. Что касается размеров кратеров, существуют достоверные эмпирические данные в пользу того, что площади кратеров (измеренные сразу же после удара метеорита о поверхность) следует гиперболическому распределению: количество кратеров, площади которых превышают s км2 , а центры расположены в пределах квадрата со стороной в 1 км2 , можно записать в виде C/s , где C - некоторая константа. За подробностями отсылаю к работам [411], [8] и [200] .
Для упрощения рассуждений (главный результат от этого не изменится) аппроксимируем лунную поверхность плоскостью, а лунные кратеры – тремами в форме кругов. Если бы Луна вечно захватывала метеориты из статистически инвариантного окружения, то каждая точка ее поверхности снова и снова оказывалась бы принадлежащей какому – либо кратеру, и так до бесконечности. С другой стороны, те или иные геологические процессы – такие, скажем, как выход на поверхность вулканической лавы – могут время от времени «стирать» кратеры, и в этом случае трема – множество, не покрытое на какой-то момент времени кратерами, может оказаться весьма нетривиальным. Кроме того, эволюция солнечной системы могла происходить таким образом, что бомбардировка Луны метеоритами заняла лишь какой-то конечный период времени. Параметр C может характеризовать либо время, прошедшее после последнего стирания кратеров, либо общую продолжительность бомбардировки.
Для оценки влияния параметра C на форму трема – фрактала попробуем изменить этот параметр, сохраняя инвариантной затравку. По мере увеличения C от 0 до 2 поверхность Луны становится все более насыщенной кратерами, а размерность D свободной от кратеров поверхности, согласно одному из выводов предыдущего раздела, уменьшается и достигает нуля при C≥2 . Зависимость формы трема – фрактала от D проиллюстрирована на рис. 424 – 427.
Читать дальшеИнтервал:
Закладка: