Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Перколяция.Надежда на то, что наш мир не более сложен, чем это необходимо, побуждает меня поверить, что условие D>D критявляется необходимым и достаточным условием для перколяции на трема – фрактале (в смысле, описанном в главе 13).

МЕТЕОРИТЫ

Распределение масс падающих на Землю метеоритов исследовано достаточно тщательно (например, в [206]). Метеориты средних размеров состоят из камня, и 1 км3 пространства содержит приблизительно P(v)=10 −25 /v метеоритов, объемы которых превосходят v км3 .

Обычно это утверждение выражают несколько иначе, пользуясь при этом довольно путаными единицами измерения: каждый год каждый квадратный километр поверхности Земли принимает на себя удар (в среднем) 0,186/m метеоритов, масса каждого из которых превышает m граммов. Поскольку средняя плотность метеоритов в более согласованных единицах, сводится к 5,4⋅10 −17 /v метеоритов, объемы которых превосходят v км3. Кроме того, земля движется по орбите со скоростью, составляющей приблизительно 1 км за 10 −9 лет – величина, обратная порядку длины траектории движения Земли вокруг Солнца, выраженному в километрах. Таким образом, пользуясь согласованными единицами измерения и округляя значения величин до их порядков (т.е. записывая 10 вместо 5,4), мы приходим к следующему выводу: за то время, пока Земля проходит в пространстве путь длиной в 1 км, на каждый квадратный километр ее поверхности приходится по 10 −25 /v метеоритов, объемы которых превосходят v км3. Полагая, что метеориты, сталкивающиеся с Землей по мере ее продвижения в пространстве, представляют собой репрезентативную выборку распределения метеоритов в этом самом пространстве, получим заявленный ранее результат.

Этот закон (10 −25 /v) формально идентичен закону C/s для лунных кратеров, однако имеется и различие: кратеры могут перекрывать друг друга, тогда как метеориты такой способностью не обладают.

Тем не менее, забавно понаблюдать, что получится, если приравнять объем v в соотношении P(v)=10 −25 /v к нулю и предположить, что метеориты – страшно подумать! – способны перекрывать друг друга. Если добавить сюда же невинное допущение о сферической форме метеоритов, то интересующее нас трема – множество можно будет изучать непосредственно (не прибегая к результатам, полученным в работе [132]). Сечения заполненного метеоритами пространства прямыми, случайным образом проведенными в этом пространстве, представляет собой линейные тремы, и можно показать, что количество таких интервалов, центры которых находятся внутри километрового промежутка, а длины превышают u км, равно C'⋅10 −25 /v . ( C' - численный коэффициент порядка 1, которым в данном контексте можно пренебречь.) Следовательно, согласно одному из выводов главы 32, размерность линейного сечения трема – множества составляет 1−10 −25 . Возвращаясь от линейных сечений к исходной фигуре, прибавим к этому соотношению 2 и получим 3−D=10 −25 .

Этот результат – бессмыслица, так как он подразумевает, в частности, что метеориты почти заполняют пространство, несмотря даже на то, что им позволено перекрывать друг друга. Тем не менее, коразмерность 3−D=10 −25 заслуживает еще одного взгляда. Допустим в первом приближении, что значение отношения 10 −25 /v удерживается на уровне некоторого положительного порога η>0 и что не существует метеоритов меньшего размера. Согласно вкратце набросанному нами рассуждению, верно следующее: если и в самом деле возможно перейти к пределу η→0 , то множество, свободное от метеоритов, сойдется при этом к трема – множеству с размерностью D=3−10 −25 . К счастью, схождение к этому предельному множеству происходит чрезвычайно медленно, - настолько медленно, что на наблюдаемом интервале способность метеоритов к перекрытию не составляет никакой проблемы. Но – к сожалению – значение D в этом случае лишено какой бы то ни было практической значимости.

ПРИЛОЖЕНИЕ: НЕМАСШТАБИРУЕМЫЕ КРАТЕРЫ

С учетом поставленной задачи распределение кратеров на поверхности Луны лучше всего описать в виде Pr(A>a)=Fa −γ , где γ=1 . Такое же значение показателя γ верно, по всей видимости, и для Марса, однако спутники Юпитера характеризуются иными значениями γ (см. [531]). Ну а для метеоритов малого объема γ<1 . Соответствующие трема – множества не являются масштабно-инвариантными.

Случай γ>1 .В первом немасштабируемом случае на любую заданную точку поверхности планеты, независимо от значения W , почти наверное приходится бесконечное количество кратеров. В текстуре поверхности наблюдается подавляющее преобладание малых кратеров. Подобная текстура характерна для поверхности Юпитера Каллисто, а показатель γ в этом случае действительно больше единицы. Неравенство γ>1 рассматривалось и в предыдущих эссе, увидевших свет еще до полета «Вояджера», хотя тогда мы могли обсуждать его лишь в качестве теоретической возможности.

Случай γ<1 . Ограничение на площадь кратеров.Обозначим наибольшую площадь через 1; тогда вероятность того, что некая точка не попадет ни в один из существующих кратеров, положительна, поскольку сходится интеграл 0∫ 1Pr(A>a)da , но уменьшается при увеличении W . Получаемая при этом щербатая поверхность даже больше похожа на срез головы швейцарского сыра, чем рассмотренные ранее масштабно-инвариантные множества. Чем больше значение γ , тем меньше количество малых отверстий, и тем более «цельным» становится получаемый сыр. Однако, независимо от γ , площадь поверхности остается положительной, т.е. поверхность представляет собой множество (несамоподобное) с размерностью 2. С другой стороны, я не сомневаюсь в том, что его топологическая размерность равна 1, а это означает, что перед нами фрактал.

В пространственном (метеоритном) случае размерности этого трема – фрактала составляют, соответственно, D=3 и D T =2 .

34 ТЕКСТУРА: ПУСТОТЫ И ЛАКУНАРНОСТЬ, ПЕРИСТОСТЬ И СУККОЛЯЦИЯ

Понятие текстуры имеет склонность просачиваться между пальцами; математики и другие ученые стремятся его избегать, потому что оно никак не дается им в руки. Инженерам и художникам избежать его не удается, но в большинстве случаев не удается и справиться с ним ко всеобщему удовлетворению. Существуют, однако, многочисленные указания на то, что некоторыми отдельными аспектами понятия текстуры мы сможем вскоре овладеть на количественном уровне.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x