Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подавляющее большинство отрезков слишком малы, чтобы их можно было разглядеть. На самом деле мы просто накрыли плоскость однородной решеткой и отметили те ячейки, на которые приходились одна или более остановок. Иными словами, каждая точка представляет собой целый миникластер.
Кроме того, сами миникластеры также собираются в скопления, причем независимо от значения D . Они демонстрируют настолько ярко выраженные иерархические уровни, что трудно поверить в то, что в рассматриваемую модель не заложено никакой явной иерархии, кроме присущего ей изначального самоподобия.
Для дальнейшего развития темы следует упомянуть и о том, что на всех иллюстрациях в данной подборке представлены начала двух различных полетов, прямого и обратного, и что эти полеты суть не что иное, как две статистически независимые копии одного процесса. Если переместить начало координат в точку какой-либо другой остановки, то и новые половины процесса будут, по всей видимости, независимыми. Следовательно, все промежуточные остановки обладают абсолютно равными правами на звание Центра Мироздания. Эта особенность составляет сущность условного космографического принципа, провозглашаемого мною в настоящем эссе.
Рассматриваемый метод никоим образом не предназначен для объяснения действительного способа образования галактик, однако вполне справляется с продвижением моей основной идеи, заключающейся в том, что условный космографический принцип ничуть не противоречит явной иерархической кластеризации. Можно предложить очень много подобных конфигураций, причем самых разнообразных, пусть даже ни одна из них не окажется «сшита по мерке».
Рис. 412. Неслучайная субординация: кластеризованная фрактальная пыль с размерностью D=1 ; субординат кривой Коха с размерностью D=1,5
Метод рекурсии, лежащий в основе построения кривой Коха, можно модифицировать так, чтобы кривая систематически терпела разрыв, в результате чего мы получим пыль, обладающую той же размерностью, что и исходная кривая (D=1) , но с совершенно иной топологией и внешним видом.
Представьте себе резиновую ленту, первоначально соединяющую концы интервала [0,1], а затем растянутую в виде кохова генератора, с помощью которого мы построили фрактальную кривую с размерностью 3/2 на рис. 81. теперь закрепим резиновую ленту в угловых точках и разрежем посередине каждый из восьми прямолинейных отрезков; получим 16 кусков резины, которые сократятся до своей исходной длины 1/16 . Свободные концы этих кусков также закрепим и повторим процесс. Окончательным результатом будет иерархически кластеризованная пыль с r=1/16 и N=16 , вследствие чего D=1 .
Такой способ построения, по сути дела, позволяет нам заранее пометить все те звенья генератора, которые затем, на следующем этапе кохова построения, будут удалены. В тексте главы этот процесс называется субординацией. В итоге остаются лишь те точки, в которых оказывается движение Коха в моменты времени, принадлежащие некоторому подмножеству с фрактальной размерностью ln16 / ln64 =4/6 . А то, что (4/6)×(3/2)=1 , спишем на особый случай правила умножения размерностей, рассматриваемого в соответствующем разделе настоящей главы.
Заметим, что все точки изображенной здесь пыли неизменно упорядочены вдоль кривой Коха, подмножеством которой и является наш генератор. Кроме того, нетрудно найти частотное распределение длин, до которых сокращаются резиновые отрезки, между последовательно расположенными точками закрепления. Количество длин ≥ u приблизительно пропорционально u −D , где D=1 . Обратите внимание, что на рис. 410 и 411 то же частотное распределение дает совершенно иную картину.
Рис. 414. Понижение размерности D с помощью субординации. Разделение скоплений Леви
Степень кластеризации плоской пыли Леви зависит от ее размерности D . Этот эффект проиллюстрирован здесь путем обработки плоского броуновского следа (D=2) с помощью ряда последовательных субординаций Леви, каждая из которых (кроме первой) применяется к результату предыдущей. В конечном итоге получаем D субординатора = −1/6 =0,89 , т.е. последовательность размерностей субординатных пылей имеет следующий вид: 1,78 (=2×0,89) , 1,59; 1,41; 1,26; 1,12; 1; 0,89.
Лестницы Леви в правых нижних углах рисунков показывают, какую децимацию пришлось перенести временнóму параметру, чтобы мы могли получить соответствующую пыль из пыли с размерностью D=1,78 . При D , близком к 2, еще вполне ясно можно различить «призрак» субординанда (непрерывного броуновского следа), однако при понижении D этот призрак тает прямо на глазах (см. главу 35). Рост кластеризации вызван не сгущением всех точек вокруг немногих центров, а всего лишь исчезновением многих точек, что приводит к росту количества видимых иерархических уровней.
Рис. 415. Пыль Леви с размерностью D=1,2600 : крупные планы
Первый рисунок (вверху слева) представляет собой вид из квадратного иллюминатора отдаленного космического корабля на звездное скопление, состоящее из 12 500 000 промежуточных остановок движения Леви. Переход к следующему по часовой стрелке виду символизирует уменьшение расстояния от корабля до центра скопления в b=3 раза, соответственно уменьшается и размер поля зрения. Конструкция, видимая в иллюминатор, меняется в деталях, однако, в общем и целом остается неизменной. Это отнюдь не является для нас неожиданностью – рассматриваемое множество самоподобно.
Рис. 416. Круговой облет скоплений Леви с размерностью D=1,3000
Форма скоплений, образованных из остановок полета Леви в плоскости, очень сильно зависит от условий выборки, т.е. при построении большого количества моделей скоплений (пусть и с одинаковой размерностью) следует ожидать не меньшего разнообразия форм.
То же верно и для малого изолированного пространственного скопления Леви при рассмотрении его с различных сторон, что демонстрируют представленные здесь иллюстрации (начиная с верхней левой и далее по часовой стрелке).
Читать дальшеИнтервал:
Закладка: