Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подавляющее большинство отрезков слишком малы, чтобы их можно было разглядеть. На самом деле мы просто накрыли плоскость однородной решеткой и отметили те ячейки, на которые приходились одна или более остановок. Иными словами, каждая точка представляет собой целый миникластер.

Кроме того, сами миникластеры также собираются в скопления, причем независимо от значения D . Они демонстрируют настолько ярко выраженные иерархические уровни, что трудно поверить в то, что в рассматриваемую модель не заложено никакой явной иерархии, кроме присущего ей изначального самоподобия.

Для дальнейшего развития темы следует упомянуть и о том, что на всех иллюстрациях в данной подборке представлены начала двух различных полетов, прямого и обратного, и что эти полеты суть не что иное, как две статистически независимые копии одного процесса. Если переместить начало координат в точку какой-либо другой остановки, то и новые половины процесса будут, по всей видимости, независимыми. Следовательно, все промежуточные остановки обладают абсолютно равными правами на звание Центра Мироздания. Эта особенность составляет сущность условного космографического принципа, провозглашаемого мною в настоящем эссе.

Рассматриваемый метод никоим образом не предназначен для объяснения действительного способа образования галактик, однако вполне справляется с продвижением моей основной идеи, заключающейся в том, что условный космографический принцип ничуть не противоречит явной иерархической кластеризации. Можно предложить очень много подобных конфигураций, причем самых разнообразных, пусть даже ни одна из них не окажется «сшита по мерке».

Рис 412 Неслучайная субординация кластеризованная фрактальная пыль с - фото 153

Рис. 412. Неслучайная субординация: кластеризованная фрактальная пыль с размерностью D=1 ; субординат кривой Коха с размерностью D=1,5

Метод рекурсии, лежащий в основе построения кривой Коха, можно модифицировать так, чтобы кривая систематически терпела разрыв, в результате чего мы получим пыль, обладающую той же размерностью, что и исходная кривая (D=1) , но с совершенно иной топологией и внешним видом.

Представьте себе резиновую ленту, первоначально соединяющую концы интервала [0,1], а затем растянутую в виде кохова генератора, с помощью которого мы построили фрактальную кривую с размерностью 3/2 на рис. 81. теперь закрепим резиновую ленту в угловых точках и разрежем посередине каждый из восьми прямолинейных отрезков; получим 16 кусков резины, которые сократятся до своей исходной длины 1/16 . Свободные концы этих кусков также закрепим и повторим процесс. Окончательным результатом будет иерархически кластеризованная пыль с r=1/16 и N=16 , вследствие чего D=1 .

Такой способ построения, по сути дела, позволяет нам заранее пометить все те звенья генератора, которые затем, на следующем этапе кохова построения, будут удалены. В тексте главы этот процесс называется субординацией. В итоге остаются лишь те точки, в которых оказывается движение Коха в моменты времени, принадлежащие некоторому подмножеству с фрактальной размерностью ln16 / ln64 =4/6 . А то, что (4/6)×(3/2)=1 , спишем на особый случай правила умножения размерностей, рассматриваемого в соответствующем разделе настоящей главы.

Заметим, что все точки изображенной здесь пыли неизменно упорядочены вдоль кривой Коха, подмножеством которой и является наш генератор. Кроме того, нетрудно найти частотное распределение длин, до которых сокращаются резиновые отрезки, между последовательно расположенными точками закрепления. Количество длин ≥ u приблизительно пропорционально u −D , где D=1 . Обратите внимание, что на рис. 410 и 411 то же частотное распределение дает совершенно иную картину.

Рис 414 Понижение размерности D с помощью субординации Разделение скоплений - фото 154

Рис. 414. Понижение размерности D с помощью субординации. Разделение скоплений Леви

Степень кластеризации плоской пыли Леви зависит от ее размерности D . Этот эффект проиллюстрирован здесь путем обработки плоского броуновского следа (D=2) с помощью ряда последовательных субординаций Леви, каждая из которых (кроме первой) применяется к результату предыдущей. В конечном итоге получаем D субординатора = −1/6 =0,89 , т.е. последовательность размерностей субординатных пылей имеет следующий вид: 1,78 (=2×0,89) , 1,59; 1,41; 1,26; 1,12; 1; 0,89.

Лестницы Леви в правых нижних углах рисунков показывают, какую децимацию пришлось перенести временнóму параметру, чтобы мы могли получить соответствующую пыль из пыли с размерностью D=1,78 . При D , близком к 2, еще вполне ясно можно различить «призрак» субординанда (непрерывного броуновского следа), однако при понижении D этот призрак тает прямо на глазах (см. главу 35). Рост кластеризации вызван не сгущением всех точек вокруг немногих центров, а всего лишь исчезновением многих точек, что приводит к росту количества видимых иерархических уровней.

Рис 415 Пыль Леви с размерностью D12600 крупные планы Первый рисунок - фото 155

Рис. 415. Пыль Леви с размерностью D=1,2600 : крупные планы

Первый рисунок (вверху слева) представляет собой вид из квадратного иллюминатора отдаленного космического корабля на звездное скопление, состоящее из 12 500 000 промежуточных остановок движения Леви. Переход к следующему по часовой стрелке виду символизирует уменьшение расстояния от корабля до центра скопления в b=3 раза, соответственно уменьшается и размер поля зрения. Конструкция, видимая в иллюминатор, меняется в деталях, однако, в общем и целом остается неизменной. Это отнюдь не является для нас неожиданностью – рассматриваемое множество самоподобно.

Рис 416 Круговой облет скоплений Леви с размерностью D13000 Форма - фото 156

Рис. 416. Круговой облет скоплений Леви с размерностью D=1,3000

Форма скоплений, образованных из остановок полета Леви в плоскости, очень сильно зависит от условий выборки, т.е. при построении большого количества моделей скоплений (пусть и с одинаковой размерностью) следует ожидать не меньшего разнообразия форм.

То же верно и для малого изолированного пространственного скопления Леви при рассмотрении его с различных сторон, что демонстрируют представленные здесь иллюстрации (начиная с верхней левой и далее по часовой стрелке).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x