Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В сущности, большую часть фрактальной геометрии можно представить как своего рода неявное изучение текстуры. В этой и в следующей главах мы попытаемся явным образом рассмотреть два конкретных аспекта текстуры, уделяя особое внимание скоплениям галактик. Некоторые замечания о текстуре можно было поместить и в более ранние главы, начиная с 8–й и 9–й, однако мне показалось более предпочтительным собрать все, связанное с текстурой, в одном месте (пусть даже и ценой прерывания дискуссии о тремах!)

Как уже неоднократно упоминалось, мои поиски модели скоплений галактик шли поэтапно. На ранних этапах, описанных в главах 32 и 33, я добился желаемых значений размерности D , сохранив при этом согласие с условным космографическим принципом. На поздних этапах, описанных в главе 35, достигнуто, ко всему прочему, и соответствие текстуры.

В этой главе несколько вводных разделов: в них представлены основные результаты наблюдений галактик, благодаря которым мне открылось различие между двумя аспектами текстуры, названными мною лакунарностью и сукколяцией. Латинское слово lacuna обозначает «пустое место, пробел», т.е. если фрактальное множество содержит достаточно большие пустоты (длинные интервалы, круги или шары большого диаметра), то мы вправе назвать его лакунарным. Сукколяционным же мы назовем фрактал, который содержит «почти» достаточное количество нитей, необходимых для осуществления перколяции; исходя из того, что латинское слово percolare означает «протекать насквозь» (глава 13), я придумал достойный, как мне кажется, неолатинский неологизм succolare (т.е. sub - colare), который означает «протекать почти» или «недопротекать».

В остальной части главы мы введем некоторые меры лакунарности; что касается мер, характеризующих степень сукколяции, то они оказываются за рамками нашего элементарного повествования.

В главе 35 показано, как можно управлять лакунарностью и сукколяцией с помощью трем.

До сих пор главная роль при измерении фракталов была отведена топологической и фрактальной размерностям. Глава 14 явилась исключением (оставшимся, впрочем, без последствий), поскольку порядок ветвления определяет иные, более тонкие, различия между фракталами с одинаковыми размерностями D T и D . Мы повидали много различных выражений вида

префактор×(величина) показатель ,

однако до сих пор нас интересовал только показатель. Теперь же, если мы хотим разобраться с тем, что скрывается за понятием текстуры, нам придется обратить внимание и на префактор. Раз уж мы не можем игнорировать его и дальше, вряд ли нам стоит удивляться тому, что и Природа (наука), и человеческая мысль (математика) оказываются сложнее, чем представляется на первый взгляд!

«ПЕРИСТЫЕ» НИТИ ГАЛАКТИК

В 1974 году, в Париже, после моей первой лекции, посвященной описанной в главе 32 модели, мое внимание было привлечено к одному таинственному открытию. В своей модели я тогда пытался достичь одной – единственной цели – получить заданное значение размерности D в некотором фрактальном множестве (по правде говоря, в то время я еще не додумался до термина фрактал). Однако во время обсуждения лекции некий оставшийся неизвестным астроном указал мне на еще один, весьма неожиданный, момент, добавляющий модели правдоподобия: в моих построениях точки нередко оказывались выстроенными вдоль почти прямых линий; обобщив результаты, можно заметить, что точки, как правило, рассыпаются вдоль довольно узких «почти – потоков» или «почти – нитей». Так вот, упомянутый астроном сообщил мне, что галактики обладают тем же свойством и даже в более ярко выраженной форме, а при внимательном рассмотрении такой галактический «почти – поток» распадается на более тонкие «почти – потоки». Кроме того, астроном подчеркнул, что термин поток в данном случае не годится, поскольку интересующие нас структуры несвязны.

Желая избежать путаницы в терминологии и подыскивая подходящее слово, я вдруг вспомнил о перистых облаках (так метеорологи называют высокие полупрозрачные «кружевные» облака) и пометил для себя, что галактики имеют перистую структуру и что следует усовершенствовать модель таким образом, чтобы эта перистость проявилась более явно.

Лишь спустя некоторое, довольно значительное, время я действительно обнаружил упоминания об этом феномене в научной литературе: в 1937 г. Томбо наблюдал «перистые» структуры в сверхгалактике Персея, а в 1950 гг. де Вокулер сообщил о наличии таких структур в нашей и Южной сверхгалактиках. Дальнейшие подтверждения я нашел в статье Питерсона [471] (о каталоге Цвикки), в работе [242] и в докладе Сонейры и Пиблса, сделанном в 1978 году (относительно каталога Ликской обсерватории, подготовленного Шейном и Виртаненом, см. [467]).

ПЕРИСТЫЕ ФРАКТАЛЫ

Очевидно, перистые структуры могут присутствовать в неслучайной фрактальной пыли, но совсем не обязаны этого делать. Например, в модели Фурнье (глава 9), порождающей совокупность «сосредоточенных масс», такие структуры напрочь отсутствуют. Напротив, если взять ковер Серпинского из главы 14 и разъединить его генератор (не проявляя излишней жестокости), то можно легко получить всевозможные перистые структуры. Поскольку размерность получаемого при этом фрактала может принимать, в сущности, любое значение, хочу еще раз подчеркнуть: перистость никак не связана с размерностью. Как бы то ни было, намеренно внесенные неслучайные перистые структуры выглядят слишком искусственно, чтобы на них стоило обращать особое внимание.

Вот почему мне показалось весьма знаменательным то обстоятельство, что в случайных моделях при значении D , достаточно близком к 2, присутствуют непредусмотренные, но ясно различимые перистые структуры.

Это наблюдение подвигло меня на более тщательное изучение других семейств случайных фракталов. Особо очевидные и интересные конфигурации можно наблюдать на иллюстрациях после главы 28 и на рис. С17, где острова, многие их которых объединяются в архипелаги, имею форму атоллов чаще, чем какую-либо другую.

ОЖИДАЕМАЯ ПЕРИСТОСТЬ «ПОЧТИ» ПЕРКОЛЯЦИОННЫХ ФРАКТАЛОВ

На рис. 426 и 427 хорошо видно, что во фракталах, построенных путем удаления случайных круглых трем (как описано в главе 33), наличествует ярко выраженная перистая структура. Для этого достаточно, чтобы размерность фрактала была близка к критической размерности перколяции D крит, оставаясь «чуть ниже» ее. В данном случае причина возникновения перистой структуры очевидна. Представим себе последовательность фрактальных множеств, каждое из которых вложено в своего предшественника, а размерность D каждого последующего множества уменьшается, становясь в конце концов меньше D крит. Известно, что топологическая размерность может измениться – скажем, уменьшиться с 1 до 0 – лишь дискретно, однако эта дискретность способна изменяться непрерывно. Например, размытая картинка, полученная путем замены каждой ее точки на шар радиуса ρ , изменяется непрерывно. Такую несфокусированную картинку можно назвать «потокообразной» - не толь при D>D крит, но и тогда, когда разность D крит −D положительна (и невелика).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x