Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предыдущая аналогия становится особенно уместной в рамках определенных обобщенных подходов к термодинамике. Рискуя заслужить обвинение в чрезмерном цитировании работ, имеющих лишь косвенное отношение к настоящему эссе, все же скажу: один из таких формализмов я рассматривал в статьях [339, 344].

ЗАКОН ДОХОДОВ ПАРЕТО

Еще один пример абстрактного масштабно-инвариантного дерева можно обнаружить в организационных структурах иерархических групп людей. Признаками простейшей масштабно-инвариантной иерархии являются следующие: а) ее члены распределены по уровням таким образом, что каждый член (за исключением тех, что находятся на самом нижнем уровне) имеет одинаковое количество N подчиненных; б) все подчиненные каждого члена иерархии имеют одинаковый «вес» U , который равен весу непосредственного начальника, умноженному на коэффициент r<1 . Наиболее удобно рассматривать в качестве этого веса доход.

Если нам нужно сравнить различные иерархии с точки зрения неравенства доходов, то можно классифицировать их членов в порядке уменьшения дохода (члены с одинаковым доходом размещаются в произвольном порядке), обозначить каждого индивидуума его порядковым номером в этом рядку (рангом ρ ) и определить скорость уменьшения дохода в ряду как функцию от ранга, или наоборот. Чем быстрее происходит уменьшение дохода при увеличении ранга, тем больше неравенство.

Здесь без каких бы то ни было изменений применим формализм, использованный в законе Ципфа: ранг ρ индивидуума с доходом U приблизительно равен:

ρ=−V+U −D F D .

Это соотношение было выведено Лайдаллом в [321].

Степень неравенства определяется, в основном, показателем

D= ln N/ ln (1/r) ,

который, судя по всему, не имеет никакого достойного обсуждения фрактального смысла. Чем больше формальный показатель D , тем больше значение r , и тем ниже степень неравенства.

Как и в случае частотности словоупотребления, модель можно обобщить, допустив, что в пределах некоторого данного уровня k значение U варьируется от индивидуума к индивидууму, т.е. что U равно произведению величины r k на некоторый случайный множитель, одинаковый для всех. При таком обобщении изменяются параметры V и P 0 - и, как следствие, D , - однако основное соотношение остается неизменным.

Заметим, что эмпирический показатель D обычно близок к 2. Построим график для тех случаев, когда он в точности равен 2, откладывая при этом обратный доход на оси, направленной вниз. В результате мы получим правильную пирамиду (т.е. длина ее основания будет равна квадрату ее высоты). Доход вышестоящего индивидуума здесь составляет геометрическое среднее между совокупным доходом всех его подчиненных и доходом одного отдельно взятого подчиненного.

Критика.Когда D=2 , наименьшее значение, равное √ 2 , возникает при N=2 . Это наименьшее значение неправдоподобно велико, из чего можно заключить, что модель Лайдалла справедлива только для иерархий, в которых D>2 . Если это так, то тот факт, что показатель D обычно близок к 2, может означать, что различия в доходах внутри иерархий бледнеют в сравнении с различиями в доходах между иерархиями, не говоря уже о различиях внутри групп, не обладающих иерархической структурой.

РАСПРЕДЕЛЕНИЕ ИНЫХ ДОХОДОВ

Более широкое исследование распределения доходов, предпринятое в [333, 335, 337], послужило источником вдохновения для работы, уже описанной в главе 37.

39 МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ И ДОПОЛНЕНИЯ

В этой главе собраны сложные формулы, математические определения и иные сведения, не вошедшие в основной текст; сюда же помещены некоторые математические и другие дополнения.

АФИННОСТЬ (САМО- ) И ПОДОБИЕ

Термины самоподобный и самоаффинный (неологизм) применяются в тексте и к ограниченным, и к неограниченным множествам (не внося, смею надеяться, двусмысленности). Во многих описаниях турбулентности, равно как и в моих ранних работах, термин самоподобный употребляется в «общем» смысле, включая в себя и понятие самоаффинности, однако в настоящем эссе общее значение оставлено лишь за термином масштабно-инвариантный.

1. САМОПОДОБИЕ

Преобразование подобия представляет собой преобразование в евклидовом пространстве ℝ E , определяемое вещественным коэффициентом r>0 . При таком преобразовании точка x=(x 1 ,...,x δ ,...,x E ) переходит в точку r(x)=(rx 1 ,...,rx δ ,...,rx E ) , а множество S , соответственно, в множество r(S) (см. [235]).

Ограниченные множества.Ограниченное множество S самоподобно (относительно коэффициента r и целого числа N ), если S представляет собой объединение N непересекающихся подмножеств, каждое из которых конгруэнтно множеству r(S) . Термин конгруэнтно означает «тождественно с точностью до смещения и / или / поворота».

Ограниченное множество S самоподобно (относительно массива коэффициентов r (1) ...r (N) ), если S представляет собой объединение N непересекающихся подмножеств, соответственно конгруэнтных r (n) (S) .

Ограниченное случайное множество S статистически самоподобно (относительно коэффициента r и целого числа N ), если S представляет собой объединение N непересекающихся подмножеств, каждое из которых имеет вид r(S n ) , где N множеств S n конгруэнтны по своему распределению множеству S .

Неограниченные множества.Неограниченное множество S самоподобно относительно коэффициента r , если множество r(S) конгруэнтно множеству S .

2. САМОАФФИННОСТЬ

Аффинное преобразование в евклидовом E - мерном пространстве определяется совокупностью положительных вещественных коэффициентов r=(r 1 ,...,r δ ,...,r E ) . При этом преобразовании каждая точка x=(x 1 ,...,x δ ,...,x E ) переходит в точку

r(x)=r(x 1,...,x δ,...,x E)=(x 1r 1,...,x δr δ,...,x Er E)

а множество S , как следствие, переходит в множество r(S) .

Ограниченные множества.Ограниченное множество S самоаффинно (относительно вектора коэффициентов r и целого числа N ), если S представляет собой объединение N непересекающихся подмножеств, каждое из которых конгруэнтно множеству r(S) .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x